

OEM Serial API Specification

ENG-0072

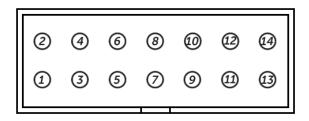
Revision Log

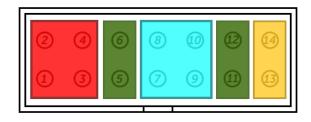
Date	Author	Changes	Rev.
2017-01-29	J. Traud	Laser Temperature clarification	В
2016-29-08	J. Traud	Initial Release	А

General Description

Wasatch Photonics OEM Spectrometers are equipped with various methods of low-level control using UART, SPI, Bluetooth, and USB.

Contents


General Description	L
OEM Connector Pinout	3
External I/O Control Connector	ł
SPI Specification	5
UART Specification	5
Bluetooth Specification ϵ	5
Packet Organization	1
Configuration Get/Set Packet	1
Configuration Set Response Packet	1
Configuration Get Response Packet	1
CRC Calculation	3
Data Transmit mode and the Data Packet)
Command Table)
FPGA Configuration Registers	<u>)</u>
Individual Command Details	3
FPGA Configuration Register Details17	1



OEM Connector Pinout

OEM spectrometers come equipped with a 14-pin 1.27mm pitch ribbon connector for low-level commands.

Pinout designations and a color-coded breakout by function can be found below.

Pin	Description	Pin	Description
1	SPI_ACQUIRE	2	N/C
3	DATA_READY	4	ACQUIRE
5	GND	6	GND
7	SPI_MISO	8	SPI_CLK
9	SPI_CS	10	SPI_MOSI
11	GND	12	GND
13	UART1_RX	14	UART1_TX

Below are the associated part numbers of the connectors.

Manufacturer Part Number	Part	Description		
3220-14-0200-00	CNC Tech 14-pos Right Angle	Connector on WP Raman		
3230-14-0101-00	CNC Tech 14-pos Socket	Mating ribbon cable connector		

External I/O Control Connector

For simple control of the device, a second connector is provided. This connector provides simple acquisition control using a single 3.3V pulse on the TRIGGER_INPUT signal. This interface also provides a TRIGGER_OUTPUT signal that provides a notification of when an image has been acquired.

NOTE: The pin numbering goes from right to left.

Pin	Description						
1	Analog Output						
2	Analog Ground						
3	TRIGGER_OUT						
4	TRIGGER_IN						
5	Ground						
6	5V 2A Output						

Below are the associated part numbers of the connectors.

Manufacturer Part Number	Part	Description	
0530150610	Molex 6-pos Right Angle	Connector on WP Raman	
51004-0600	Molex 6-pos Housing	Mating connector	

SPI Specification

The WP Raman SPI interface is a simple Serial Peripheral Interface (SPI) compatible serial bus configured as a SLAVE. The bus signals required are a clock input (SCK) plus a separate data input (SI) and data output (SO) lines. Access to the device is controller using a chip select (CS) input signal. Commands and replies are received and transmitted in 8-bit packets and data is transmitted in 16-bit packets. Both signals are sent at a 21-MHz clock rate.

The interface supports on Mode 0 (CPOL = 0, CPHA = 0) configuration shown in **Figure 1** below. The state of the SCK signal when the bus master is in Stand-by mode and no data is being transferred is low for Mode 0. The Serial Data In (SI) is sampled at the rising edge of the Serial Clock (SCK) signal and the Serial Data Output (SO) is driven after the falling edge of the SCK clock signal.

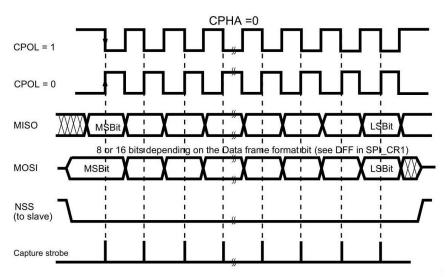


Figure 1 – SPI Timing

Description	Value	Units
Maximum voltage on any pin	3.6	V
Maximum low level input	0.8	V
Minimum high level input	2.0	V
Minimum high level output	2.9	V
Maximum low level output	0.4	V
Maximum CPI clock rate	20	MHz

See OEM Connector Pinout on Page 3 for pin assignment information

UART Specification

OEM WP Raman spectrometers also features a simple UART (Universal Asynchronous Receiver/Transmitter) interface method similar to the SPI protocol described above. The UART interface is a 2-wire protocol consisting of one Transmit line (Tx) and one Receive line (Rx) along with a common ground.

The UART implementation on the OEM WP Raman spectrometer is configured for a baud rate of 921,600. The voltage level tolerances are the same as the SPI specification already covered.

Description	Value	Units
Maximum voltage on any pin	3.6	V
Maximum low level input	0.8	V
Minimum high level input	2.0	V
Minimum high level output	2.9	V
Maximum low level output	0.4	V
Baud Rate	921,600	bps

See OEM Connector Pinout on Page 3 for pin assignment information

The advantage to the UART interface over SPI is that it's a simpler control method and does not require a host and slave setup where a host must initiate every transfer. This is useful for bulk data transfers of spectra in that you will not need to watch to see if data is ready, the instrument will reply with data as soon as it's available.

The disadvantage to the UART interface over SPI is that the data rate is less and that a UART is a pointto-point interface, meaning it links two devices together. Using a SPI interface would permit a single device to control and query information from multiple spectrometers over a single bus.

Bluetooth Specification

Our OEM spectrometers also feature a Class 2 Bluetooth interface. The Bluetooth interface utilizes a Bluetooth to serial module (RN-42) that shares the UART signals as the previous section. Due to this they share the exact same protocol and baud rate.

Packet Organization

Packets are comprised of a 1-byte Start delimiter, 2-bytes to specify length, 1-byte to specify the command code, a varying length Data Block, 1 byte CRC and an End Delimiter as shown below:

Byte	0	1	2	3	4	5	N-2	N-1	Ν
Value	、	L1	LO	CMD	D0	D1	 DL	CRC	>

The length value (L1, L0) is a type byte count of the Command Code and Data bytes. The Command Code byte selects the target setting. The CRC is calculated from the length, command, and data bytes.

Configuration Get/Set Packet

Communication is initialized by the master sending a packet as described above. Setting the MS-bit of the Code will make the command a WRITE command, clearing it will make it a READ command. The individual Command Codes can be found in the next section.

Configuration Set Response Packet

The SET command response returns the code and a single byte in the data block which signals SUCCESS or a reason for FAILURE as shown in the table below.

Value	Meaning
-4	Busy
-3	Internal address invalid
-2	Internal communication failure
-1	Internal data error
0	Success
1	Length error
2	CRC error
3	Unrecognized command
4	Port not available

Configuration Get Response Packet

A successful GET command response includes the command and the data block as described in the next section

CRC Calculation

The Cyclic Redundancy Check (CRC) byte for error detection is identical to that of the Maxim/Dallas 1-Wire devices, called *Dow CRC*. This calculation produces an 8-but CRC value using the polynomial:

 $X^8 + X^5 + X^4 + X^0$.

The following code is a simple C implementation of this CRC

```
//! CRC 8 lookup table
static const uint8_t CRC_8_TABLE[256] =
Ł
        0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
      157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
       35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
      190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
      70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
      219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
      101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
      248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
      140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
      17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
      175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
      50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
      202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
      87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
      233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
      116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53
};
Calculate the 8 bit CRC of length bytes
      Same as 1-Wire CRC, Polynomial = x^8+x^5+x^4+x^1
Parameters:
      DataArray: array to calculate CRC of
      Length: Length of array to calculate CRC of
Return 8 bit CRC value
uint8_t Calc_CRC_8(const uint8_t *DataArray, const uint16_t Length)
{
      uint16_t i;
      uint8_t CRC;
      CRC = 0;
      for (i=0; i<Length; i++)</pre>
            CRC = CRC_8_TABLE[CRC ^ DataArray[i]];
      return CRC;
}
```

For more information, see: APPLICATION NOTE 27 Understanding and Using Cyclic Redundancy Checks

Data Transmit mode and the Data Packet

After an acquire signal is sent and when the data is ready to send and the Data Ready pin will go high. Then the SPI port will automatically switch from Command Mode to Data Transmit Mode.

In Data Transmit Mode the SPI bus is setup to send 16-bit words, one for each data point. Only data is sent, none of the other information such as delimiters, length, or CRC are included. Each data point is sent out with each 16 clock cycles. When all of the data points are transmitted (either 1024, 1044, or 2048 depending on sensor configuration) the Data Ready pin will go LOW and the SPI port will switch back to Command Mode.

Command Table

Description	Code	Set Bytes	Transmitted Data	Get Bytes	Received Data
Acquire Reset	0x09	0		0	
Acquire image	0x0A	0		Pixel Count	16-bit data points
Reset FPGA	0x0B	0		0	
Poll for data ready, over threshold	0x0C	0		1	 0: No Data, 1: Yes, Below threshold, 2: Yes, Above threshold
Read Firmware revision	0x0D	0		3	ASCII byte revision
ARM Status	0x0E	0		2	2-byte status TBD
ARM Reset	0x0F	0		0	
Read FPGA revision	0x10	0		7	ASCII byte revision
Integration time	0x11	3	24-bit Integration time	3	24-bit Integration time
FPGA configuration register	0x12	2	16 independent bits of configuration	2	16 independent bits of configuration
CCD signal offset	0x13	2	16-bit offset	2	16-bit offset
CCD signal gain	0x14	2	16-bit gain	2	16-bit gain
Read Pixel Count	0x15	0		2	16-bit pixel count
Laser temperature set point	0x16	2	16-bit set point	2	16-bit set point
Laser modulation duration	0x17	5	40-bit modulation duration	5	40-bit modulation duration
Laser modulation pulse delay	0x18	5	40-bit modulation pulse delay	5	40-bit modulation pulse delay
Laser modulation period	0x19	5	40-bit modulation period	5	40-bit modulation period

Description	Code	Set Bytes	Transmitted Data	Get Bytes	Received Data
Number of frames to acquire	0x1A	1	Frames to acquire after trigger	1	Frames to acquire after trigger
CCD Data Threshold	0x1B	2	16-bit threshold	2	16-bit threshold
FPGA Status	0x1C	0		1	8 independent status bits
Laser temperature	0x1D	1	7-bit temperature	1	7-bit temperature
Laser modulation pulse width	0x1E	5	40-bit modulation pulse width	5	40-bit modulation pulse width
Get actual integration time	0x1F	0		3	24-bit integration time
Get actual frame count	0x20	0		2	16-bit frame count
Laser Transition Point 1	0x21	4		4	
Laser Transition Point 2	0x22	4		4	
Laser Transition Point 3	0x23	4		4	
Laser Transition Point 4	0x24	4		4	
Laser Transition Point 5	0x25	4		4	
Laser Transition Point 6	0x26	4		4	
Horizontal Binning	0x27	1	2-bit binning	1	2-bit binning
Trigger Delay	0x28	3	24-bit Delay in 0.5 us	3	24-bit Delay in 0.5 us
CCD Temperature	0x49	0		2	12-bit temperature

FPGA Configuration Registers

Description	Code	Set Bytes	Transmitted Data	Get Bytes	Received Data
Output Test pattern	0x30	1	LS-bit set to enable	1	LS-bit set if enabled
Computation Engine Output Enable	0x31	1	LS-bit set to enable	1	LS-bit set if enabled
Select USB FS	0x32	1	LS-bit set to enable	1	LS-bit set if enabled
Laser modulation	0x33	1	LS-bit set to enable	1	LS-bit set if enabled
Laser On	0x34	1	S-bit set to enable 1		LS-bit set if enabled
Continuous read CCD mode	0x35	1	LS-bit set to enable	1	LS-bit set if enabled
CCD threshold sensing	0x36	1	LS-bit set to enable	1	LS-bit set if enabled
CCD external trigger	0x37	1	LS-bit set to enable	1	LS-bit set if enabled
CCD temperature control	0x38	1	LS-bit set to enable	1	LS-bit set if enabled
Laser mod link to integration time	0x39	1	LS-bit set to enable	1	LS-bit set if enabled
External Output trigger source	0x3A	1	LS-bit set to enable	1	LS-bit set if enabled
Laser power ramp	0x3B	1	LS-bit set to enable	1	LS-bit set if enabled
CCD area scan	0x3C	1	LS-bit set to enable	1	LS-bit set if enabled
Alternate laser	0x3D	1	LS-bit set to enable	1	LS-bit set if enabled
Unused	0x3E	1	LS-bit set to enable	1	LS-bit set if enabled
Last Pixel CRC16	0x3F	1	LS-bit set to enable	1	LS-bit set if enabled

Individual Command Details

Acquire Reset		Read	N/A		Write	0x89	0 bytes
Description: Resets the data acquisition and data transmission state machines.							

Acquire Image	Read 0x0	A 0 bytes	Write	N/A					
Description: Acquires image from the CCD. There is no response. This is functionality equivalent to									
a positive transition on the external trigger input pin. This automatically sets the data bus to output									
the image in 16-bit data blocks.									

Reset FPGA		Read	N/A	Write	0x8B	0 bytes
Description:	Resets the FPGA					

Poll Data Ready	Read	0x0C	1 byte	Write	N/A						
Description: When using the device in SPI mode, the status of the data can be read from this											
register. In UART and USB modes the spectrum data will stream from the device automatically.											
0 – Data is not ready.											
1 – Data is ready, but not over threshold.											
2 – Data is ready and is over threshold.											

ARM Firmware	e Revision	Read	0x0D	5 bytes	Write	N/A		
Description: Device responds with a 5-byte firmware version number in ASCII.								

ARM Status		Read	0x0E	2 bytes	Write N/A			
Description: Device responds with a 2-byte status register. Contents are TBD								

ARM Reset		Read	N/A		Write	0x8F	0 bytes
Description:	Reinitializes the d	evice to	boot-up	state.			

FPGA Revision	Read	0x10	7 bytes	Write 1	N/A			
Description: Device responds with a 7-byte FGPA code version in ASCII								

Integration Time	Read 0	x11 3 bytes	Write	0x91	3 bytes			
Description: The integration time prior to acquire image data from the CDD. This is 24-bit register								
and depending on the device, the units will either be 1ms or 10ms resolution.								

FPGA Configuration		Read 0)x12	2 bytes	Write	0x92	2 bytes
Description: This c recommended to set t		-		figuration word in ctly. Rather use th			
	Bit	Description			Defau	lt	
	0	Output Test Pa	Output Test Pattern				
	1	Computational	Engine	Output Enable	1		
	2	Select USB FS (mode)	1		
	3	Laser modulati	on		0		
	4	Laser Power		0			
	5		Continuous read CCD mode				
	6	CCD threshold			0		
	7	CCD external tr			0		
	8	CCD temperatu			0		
	9	Laser mod link			0		
	10	External trigger		2	0	_	
	11	Laser power ra	mp		0		
	12	CCD area scan	-		0		
	13 14	Unused	Alternate Laser				
	14	Last Pixel is CR	C16		1		
	13		010		0		

CCD Offset		Read	0x13	2 bytes	Write	0x93	2 bytes	
Description:	The offset added to the CCD pixel values. Defaults to 0 on reset.							

CCD Gain		Read	0x14	2 bytes	Write	0x94	2 bytes
Description:	The gain added to the CCD pixel values. Defaults to 1.9 on reset.						

Pixel Count		Read	0x15	2 bytes	N/A			
Description: Returns the number of data points returned in Data Transmit mode. This is during an								
image acquisition.								

Laser Tempera	ature Set Point	Read	0x16	2 bytes	Write	0x96	2 bytes
Description: The laser temperature set point. On reset the laser temperature set point is 127.							

Laser Modulation Duration	Read 0x17	5 bytes	Write 0x97	5 bytes				
Description: When modulation the laser (bit 3 of the configuration register), this command selects								
the time the laser is being modulated during the integration time. The LSB represents 1us. On reset								
the value is set to 0.								

Laser Modulation Pulse DelayRead0x185 bytesWrite0x985 bytesDescription:When modulation the laser (bit 3 of the configuration register), this command selectsthe delay from the start of integration to the beginning of laser modulation. The LSB represents 1us.On reset the value is set to 0.

Laser Modulation PeriodRead0x195 bytesWrite0x995 bytesDescription:When modulation the laser (bit 3 of the configuration register), this command selectsthe period of the laser modulation.The LSB represents 1us. When laser power ramping is enabled,this value determines the length of the ramp.On reset the value is 3162, which corresponds to a 10second ramp.

ſ	Number of Fra	mes to Acquire	Read	0x1A	1 byte	Write 0x9A	1 byte	
۵	Description: This sets the number of frames to acquire with each trigger event. Defaults to 1 on							
r	eset.							

CCD Data Threshold	Read 0x1E	2 bytes	Write 0x9B	1 bytes			
Description: Sets the threshold for sensing the CCD data. If any value in the CD data frame has a							
16-bit value greater than the setpoint, the POLL_DATA command will return a value of 2 rather than							
1. Value is an unsigned short. Defaults to 0 on reset.							

FPGA Status		Read	0x1C	1 byte	Write	N/A	
Description:	FPGA Status Register. Current format is TBD.						

Laser Temperature	Read	0x1D	1 byte	Write	N/A			
Description: Gets the voltage of the thermistor mounted inside or next to the laser. The								
temperature is represented as a 1	2-bit va	lue with t	he top four bits ze	eroed ou	t. To calc	ulate the		
temperature from the ADC value,	use the	code bel	ow:					
Thermistor_Voltage = (ADC_Reading/4096)*2.468;								
Thermistor_Resistance =								
Thermistor_Voltage/((2.468-Thermistor_Voltage)/21450));								
Temp_in_C = 3977/(log(The	rmisto	or_Resis	stance/10000)	+ 3977	/(25+27	73) - 273;		

Laser Modulation Pulse WidthRead0x1E5 bytesWrite0x9E5 bytesDescription:When modulating laser (bit 3 of the configuration register), this command selects the
pulse width of the laser modulation. The LSB represents 1us. Defaults to 0 on reset.

Actual Integration TimeRead0x1F3 bytesWriteN/ADescription:The command reads the actual integration time. Actual integration time differs from
the set integration time under two conditions.

1.) In standard acquisition, the actual integration time will add the clock out time. Therefore, a 1-ms integration time will have an actual integration time of about 4.2 msec.

2.) Under conditions of external triggering, the integration window will be extended to include the output laser pulse time, thus extending the set-point integration time.

Actual Frame CountRead0x202 bytesWriteN/ADescription:This command reads the internal frame/capture count. It is incremented for each
capture. It is reset to 0 upon power up. Two byte integer value which will roll over after 65,535.

Laser Transition Point 1 - 6	Read 0x21	4 bytes	Write 0xA1	4 bytes				
Description: Transition points for switching laser. Transition point 1 is command 0x21 and								
Transition Point 6 is at 0x26.								

Laser Transition Point 1 - 6	Read	0x21	4 bytes	Write	0xA1	4 bytes	
Description: Transition points for switching laser. Transition point 1 is command 0x21 and							
Transition Point 6 is at 0x26.							

Horizontal Bin	ning	Read	0x27	1 byte	Write	0xA7	1 byte
Description: Enables and disables horizontal binning							

٦	Frigger Delay		Read	0x28	3 bytes	Write	0xA8	3 bytes
(Description: The amount of time after an acquisition request to begin acquiring data. The 24-bit							
r	register is in units of 0.5 us.							

CCD Temperature	Read	0x49	2 bytes	Write	N/A			
Description: The ADC value of the thermistor attached to the CDD. This is present in devices with								
the cooled CCD option. The temperature in centigrade can be calculated in the same manner as the								
laser temperature on the previous page.								

FPGA Configuration Register Details

Output Test Pattern		Read	0x30	1 byte	Write	0xA0	1 byte
Description: Data sent out is a pattern instead of real data, starting from 21,864 (0x5556) and							
counting upward at each data point. No-zero enables and zero disables.							

Output Test Pa	attern	Read	0x31	1 byte	Write	0xA1	1 byte
Description:	n.						

Select FS USB		Read	0x32	1 byte	Write 0xA2	1 byte	
Description: Selects Full Speed USB over High Speed USB. Device must be in Full Speed to update							
firmware through a DFU process. A non-zero value enables Full Speed. Defaults to High Speed.							

Laser Modulat	tion	Read	0x33	1 byte	Write	0xA3	1 byte
Description: Laser modulation enable. On reset Laser Modulation is disabled.							

Laser On		Read	0x34	1 byte	Write	0xA4	1 byte
Description:	iption: Turns Laser ON and OFF. On reset the laser if OFF.						

Continuous Re	ad CCD Mode	Read	0x35	1 byte	Write	0xA5	1 byte
Description: Captures frames continuously after trigger until bit is cleared. Default setting is OFF							setting is OFF.

CCD Threshold SensingRead0x361 byteWrite0xA61 byteDescription:The command enables or disables or disables data threshold sensing of the CCD data. When
enabled each pixel of the incoming CCD data is compared to a user-defined threshold. If any pixel
exceeds the threshold, a bit in the FPGA status register is set. When disabled the status bit is always
low. On reset CCD data threshold sensing is disabled.Write0xA61 byte

CCD External Trigger	Read	0x37	1 byte	Write	0xA7	1 byte		
Description: The command enables or disables the laser or, when dealing with an external laser								
trigger, disables the external trigger signal, setting that value to logic 0 (0 volts). On reset the laser is								
disabled, so external trigger signaling must be preceded by enabling this line.								

CCD Temperature Control	Read	0x38	1 byte	Write 0xA8	1 byte			
Description: The command enables or disables CCD temperature control. When enabled the TEC								
attached to the CCD will attempt to maintain the CDD at the specified temperature set point. On reset								
the CCD temperature control is disabled.								

Laser Mod Lin	k to Int. Time	Read	0x39	1 byte	Write	0xA9	1 byte
Description:	The command lin	ks the la	ser modu	lation (when enal	oeld) to ⁻	the integr	ration time.

External Outp	ut Trigger Source	Read	0x3A	1 byte	Write	0xAA	1 byte	
Description:	Description: Sets trigger source for acquiring data. Defaults to 0 for internal trigger on reset.							

Laser Power RampRead0x3B1 byteWrite0xAB1 byteDescription:The command enables or disables or disables ramping of the laser power when the laser is being
turned on or off. When laser ramping is enabled, the Laser Modulation Period is redefined as the
period of the laser ramping. For example, if the laser modulation period is set to 4, the laser ON signal
will be 1-us on, 3-us off; then 2-us off; then 3-us on, 1-us off and then on all the time. On reset laser
ramping is disabled.Note: The command is a set of the laser of the laser