

Wasatch Photonics
ENG-0034

Feature Identification Device (FID)
EEPROM Specification

Revision 15

Jan 3, 2023

ENG-0034 Revised 30-Nov-2022

Rev. 15 2 of 15

Changelog
Revision Date By Reason

1 2017-25-1 J. Traud Formatting, updated FID protocol to include coefficients on
device.

2 2017-18-7 J. Traud Added Excitation to page 1. Added bad pixel allotment to
page 5.

3 2018-05-29 J. Traud
Updated spec to include two sets of GAIN and OFFSET
values as well as calibration information for output laser
power (UNRELEASED)

4 internal M. Zieg
R. Dickerson

● Added floating-point excitation wavelength
● changed revisioning from per-page to entire EEPROM
● changed ints to uint where negatives were invalid
● moved min/maxIntegrationTimeMS to fit 24-bit range

5 internal M. Zieg added productConfiguration

6 2018-18-09 M. Zieg added Raman intensity calibration

7 internal T. Stohrer added Average FWHM (nm or cm-1 per Excitation)

8 2020-03-23 M. Zieg added page 6/7 subformat

9 internal M. Zieg Added FeatureMask

10 Feb 25,
2021 M. Zieg Added laserWarmupSec, FeatureMask.gen15, and

FeatureMask.cutOffFilterInstalled

11 Apr 14,
2021 M. Zieg Added subformat 3

12 Jun 28,
2021 M. Zieg Added HardwareEvenOddCorrection

13 Nov 4, 2021 M. Zieg
E. Dort Updated subformat 3, added subformat 4

14 Mar 21,
2022 M. Zieg Added sigLaserTEC, hasInterlockFeedback

15 Nov 30,
2022 M. Zieg added laserWatchdogSec, lightSourceType, hasShutter

Note that the Revision of the ENG-0034 document corresponds to the “format” of the EEPROM page
structure, as indicated in the last byte on the first page (page 0, byte 63).

ENG-0034 Revised 30-Nov-2022

Rev. 15 3 of 15

Contents

1. General Description 3
1.1. USB PID 4
1.2. Other sources of information 4
1.3. Software Driver Libraries 4

2. Field Definitions 4
2.1. Feature Mask 4
2.2. Light Source Type 5

3. EEPROM Page Structure 5
4. Custom EEPROM Structure 9

4.1. Subformat 1: NIST SRM Raman Intensity Calibration 9
4.2. Subformat 2: Advanced Wavelength Calibration Spline 11
4.3. Subformat 3: Untethered Configuration 13
4.4. Subformat 4: Detector Regions 14

ENG-0034 Revised 30-Nov-2022

Rev. 15 4 of 15

1. General Description
This document details the method for identifying the model, serial number, configuration settings and
features of a Wasatch Photonics spectrometer, primarily through parsing its internal EEPROM.

In particular, this describes models which utilize the Wasatch Feature Identification Device (FID)
protocol, essentially a standard of using the onboard EEPROM to “self-describe” the features and
confirmation available within the spectrometer.

This document does not describe spectrometers designed for the OCT market such as the Cobra series.

1.1. USB PID
The simplest way to tell what type of spectrometer you’re connected to is by checking its USB VID
(Vendor ID) and PID (Product ID) codes as reported by the USB bus. Following are valid / supported VID
and PID combinations for Wasatch Photonics USB spectrometers.

VID PID USB Descriptor
0x24aa 0x1000 WP spectrometer with FX2 µController and Hamamatsu silicon detector
0x24aa 0x2000 WP spectrometer with FX2 µController and Hamamatsu InGaAs detector
0x24aa 0x4000 WP spectrometer with ARM µController

1.2. Other sources of information
Other information about the spectrometer can be determined by communicating with it via USB
opcodes and reading the responses of various USB commands described in Wasatch Photonics
Engineering document ENG-0001, “USB FID API.” This document describes the EEPROM contents and
structure; that document describes all the various USB commands supported by FID spectrometers,
including those required to read and write the EEPROM.

In particular, there are USB commands provided to retrieve the spectrometer’s microcontroller
firmware version, its FPGA firmware version, FPGA compilation options and other key attributes from
which the supported feature set can be derived.

1.3. Software Driver Libraries
Although this document provides a technical reference to the EEPROM contents and structure, most
application developers are not required (or advised) to read and parse the EEPROM manually. All of
Wasatch’s “application-level drivers” (control libraries) have pre-built functions to parse the EEPROM
contents and make them easily accessible as clearly labeled object attributes.

Examples:

● C# / .NET: WasatchNET.EEPROM
● Python: wasatch.EEPROM
● C/C++: WasatchVCPP::EEPROM
● Xamarin: EnlightenMobile.Models.EEPROM

2. Field Definitions
The following EEPROM fields represent bitmasks or enumerations requiring additional format
specification beyond the raw field table.

https://wasatchphotonics.com/api/Wasatch.NET/class_wasatch_n_e_t_1_1_e_e_p_r_o_m.html
https://wasatchphotonics.com/api/Wasatch.PY/classwasatch_1_1_e_e_p_r_o_m_1_1_e_e_p_r_o_m.html
https://wasatchphotonics.com/api/Wasatch.VCPP/class_wasatch_v_c_p_p_1_1_e_e_p_r_o_m.html
https://github.com/WasatchPhotonics/EnlightenMobile/blob/master/EnlightenMobile/Models/EEPROM.cs

ENG-0034 Revised 30-Nov-2022

Rev. 15 5 of 15

2.1. Feature Mask
“FeatureMask” is a big-endian uint16 EEPROM field on page 0 which provides compact storage of
certain rare features and settings which software should be aware of. The current field structure is:

Bit Mask Name Description Initial Rev
0 0x0001 invertXAxis Spectra should be horizontally

inverted (is read-out red-to-blue)
9

1 0x0002 bin2x2 2D detectors should attempt to
bin (average) four-pixel squares (2
across by 2 tall), e.g. to smooth-
out alternating colors from Bayer
filters

9

2 0x0004 gen15 Spectrometer includes “Gen 1.5”
electronics including the OEM
Accessory Connector

10

3 0x0008 cutOffFilterInstalled Spectrometer has a cut-off filter
installed, presumably of a
wavelength indicated by the
configured Horizontal ROI pixel

10

4 0x0010 hardwareEvenOddCorrect
ion

InGaAs even-odd correction is
performed in the spectrometer’s
FPGA, and does not need to be
applied in software (drivers etc)

12

5 0x0020 sigLaserTEC SiG Laser has a TEC 14
6 0x0040 hasInterlockFeedback Supports canLaserFire and

isLaserFiring (via laser driver /
interlock board)

14

7 0x0080 hasShutter Spectrometer has a built-in
shutter

15

8 0x0100 reserved
9 0x0200 reserved
10 0x0400 reserved
11 0x0800 reserved
12 0x1000 reserved
13 0x2000 reserved
14 0x4000 reserved
15 0x8000 reserved

ENG-0034 Revised 30-Nov-2022

Rev. 15 6 of 15

2.2. Light Source Type
Value Definition

0 undefined
1 Class 3B Single-Mode Laser (~100mW max)
2 Class 3B Multi-Mode Laser (~450mW)
… reserved

254 No laser or internal light source
255 undefined

3. EEPROM Page Structure
The EEPROM for different models may contain 256 or 512 “pages” of 64 bytes each. On some models,
part of the EEPROM is used for firmware code storage and is not available for data storage. On all
models, at least 8 pages (512 bytes) are consistently available for use in standard spectrometer
configuration. The EEPROM itself is physically either a Microchip 24LC128 (FX2 architecture, 16KB) or
AT24C256C-XHL-T (ARM architecture, 32kB).

EEPROM pages are read and written as raw buffers by the firmware. The firmware does not attempt to
read or parse individual fields within the pages, therefore the internal format and structure of EEPROM
pages can change and evolve over time without recompiling the firmware.

The last byte of the first page (page 0, byte 63) is a “format” revision number describing the first 6 pages
EEPROM (pages 0-5). The last byte of the 6th page (page 5, byte 63) is a “subformat” revision number for
the following EEPROM pages (pages 6-7 and beyond).

Table 3 EEPROM Page Overview

Page General Function
0 Device identification and features
1 Device calibration
2 Detector configuration
3 Lifetime usage statistics
4 Customer data
5 Bad pixel configuration
6 Custom
7 Custom

The following datatypes are referenced in the EEPROM field definitions:

● char[] — an ASCII string of the given maximum length. If a value less than the maximum is
written to the field, at least one trailing null (‘\0’) should be used as a C-style string terminator.
If the full field length is used, no terminating null is required.

● bool — although physically stored as a uint8 (unsigned char), field is logically a Boolean and only
values of 0 and 1 are guaranteed supported.

● float32 — these are 4-byte IEEE 754 Float
● byte — these values may be internally treated as enums; see relevant command documentation

https://www.microchip.com/en-us/product/24LC128
http://ww1.microchip.com/downloads/en/DeviceDoc/20006270A.pdf

ENG-0034 Revised 30-Nov-2022

Rev. 15 7 of 15

Table 4 EEPROM Page Format

Page Size Offset Description Format
0 64 0-15 Model name char[16]
 16-31 Serial number char[16]
 32-35 Baud rate uint32
 36 Cooling available bool
 37 Battery available bool
 38 Laser available bool
 39-40 Feature Mask (bitmask) uint16
 41-42 Slit size in um uint16
 43-44 Startup Integration Time in ms uint16
 45-46 Startup Temperature in °C int16
 47 Startup Triggering Mode byte
 48-51 Gain (for InGaAs: Even Pixel Gain)1 float32
 52-53 Offset (for InGaAs: Even Pixel Offset) 2 int16
 54-57 Odd Pixel Gain (InGaAs systems only) 2 float32
 58-59 Odd Pixel Offset (InGaAs systems only) 2 int16
 60-62 Unused
 63 EEPROM format revision = 10 byte

Page Size Offset Description Format
1 64 0-3 Wavelength calibration Coeff0 float32
 4-7 Wavelength calibration Coeff1 float32
 8-11 Wavelength calibration Coeff2 float32
 12-15 Wavelength calibration Coeff3 float32
 16-19 °C → DAC TEC Coeff0 float32
 20-23 °C → DAC TEC Coeff1 float32
 24-27 °C → DAC TEC Coeff2 float32
 28-29 Tmax (max TEC setpoint in °C) int16
 30-31 Tmin (min TEC setpoint in °C) int16
 32-35 ADC → °C Detector Temperature Coeff0 float32
 36-39 ADC → °C Detector Temperature Coeff1 float32
 40-43 ADC → °C Detector Temperature Coeff2 float32
 44-45 Thermistor Resistance at 298K int16
 46-47 Thermistor Beta Value int16
 48-59 Calibration Date char[12]
 60-62 Calibrated By char[3]
 63 Unused

1 InGaAs products use two registers for gain and two for offset. This allows for the even and odd pixels to be
adjusted independently. All other products use the singular gain and offset register found on bytes 48 through 53

ENG-0034 Revised 30-Nov-2022

Rev. 15 8 of 15

Page Size Offset Description Format
2 64 0-15 Detector Name char[16]
 16-17 Active Pixels Horizontal uint16
 18 Laser Warmup Time (seconds) uint8
 19-20 Active Pixels Vertical uint16
 21-24 Wavelength Calibration Coeff4 float32
 25-26 Actual Horizontal Pixels uint16
 27-28 ROI Horizontal Start uint16
 29-30 ROI Horizontal End uint16
 31-32 ROI Vertical Region 1 Start uint16
 33-34 ROI Vertical Region 1 End uint16
 35-36 ROI Vertical Region 2 Start uint16
 37-38 ROI Vertical Region 2 End uint16
 39-40 ROI Vertical Region 3 Start uint16
 41-42 ROI Vertical Region 3 End uint16
 43-46 Reserved: Linearity Coeff0

2 float32
 47-50 Reserved: Linearity Coeff1 float32
 51-54 Reserved: Linearity Coeff2 float32
 55-58 Reserved: Linearity Coeff3 float32
 59-62 Reserved: Linearity Coeff4 float32
 63 Unused

Page Size Offset Description Format
3 64 0-3 Reserved: Device lifetime operation (minutes) uint32
 4-7 Reserved: Laser lifetime operation (minutes) uint32
 8-9 Reserved: Max laser temperature (°C) int16
 10-11 Reserved: Min laser temperature (°C) int16
 12-15 Laser Power mW → percent Coefficient 03 float32
 16-19 Laser Power mW → percent Coefficient 1 float32
 20-23 Laser Power mW → percent Coefficient 2 float32
 24-27 Laser Power mW → percent Coefficient 3 float32
 28-31 Maximum Laser Power (mW) float32
 32-35 Minimum Laser Power (mW) float32
 36-39 Excitation Wavelength (nm)4 float32
 40-43 Min Integration Time (ms, 24-bit) uint32
 44-47 Max Integration Time (ms, 24-bit) uint32
 48-51 Average FWHM (nm or cm-1 per Excitation) float32
 52-53 Laser Watchdog Timer (sec) (0=disable) uint16
 54 Light Source Type (enum) byte
 55-63 Unused

2 Linearity Coeffs 0-3 have been used to provide laser power calibration in photodiode-equipped systems
3 Laser power calibration and min/max thresholds normally provided for multi-mode lasers, not single-mode
4 Floating-point version of excitation wavelength (nm) in version 4+

ENG-0034 Revised 30-Nov-2022

Rev. 15 9 of 15

Page Size Offset Description Format
4 64 0-63 User Text String char[64]

Page Size Offset Description Format
5 64 0-1 Bad Pixel 15 int16
 2-3 Bad Pixel 2 int16
 4-5 Bad Pixel 3 int16
 6-7 Bad Pixel 4 int16
 8-9 Bad Pixel 5 int16
 10-11 Bad Pixel 6 int16
 12-13 Bad Pixel 7 int16
 14-15 Bad Pixel 8 int16
 16-17 Bad Pixel 9 int16
 18-19 Bad Pixel 10 int16
 20-21 Bad Pixel 11 int16
 22-23 Bad Pixel 12 int16
 24-25 Bad Pixel 13 int16
 26-27 Bad Pixel 14 int16
 28-29 Bad Pixel 15 int16
 30-45 productConfiguration char[16]
 46-62 Unused
 63 Page 6 and 7 subformat byte

5 A value of -1 in any “Bad Pixel” field represents “N/A”; otherwise, the value indicates the (zero-based) pixel index
that should be rejected (typically by averaging adjacent pixels in software)

ENG-0034 Revised 30-Nov-2022

Rev. 15 10 of 15

4. Custom EEPROM Structure
The last two EEPROM pages can be configured to hold a variety of different fields and structures,
depending on the sub-format code in the last byte of page 5:

Subformat Page 6 and 7 Contents
0 User Data
1 NIST SRM Raman Intensity Calibration
2 Advanced Wavelength Calibration Spline
3 Untethered Configuration
4 Detector Regions

5-255 Undefined

4.1. Subformat 1: NIST SRM Raman Intensity Calibration
This format is used for Raman spectrometers for which a NIST-standard SRM Raman Intensity
Calibration has been provided.

The first byte of the Raman Intensity Calibration section indicates the meaning of the following 7
floating-point fields.

● A value of 0 indicates no calibration is available.
● A value of 1-7 indicates a polynomial calibration of order n. That is, a value of 7 would indicate

that the calibration is provided as a 7th-order polynomial, and that the next 8 floats represent
coefficients 0 (x0) through 7 (x7).

Page Size Offset Description Format
6 64 0 Raman Intensity Calibration order byte
 1-4 Coeff 0 float32
 5-8 Coeff 1 float32
 9-12 Coeff 2 float32
 13-16 Coeff 3 float32
 17-20 Coeff 4 float32
 21-24 Coeff 5 float32
 25-28 Coeff 6 float32
 29-32 Coeff 7 float32
 33-63 Unused

Page Size Offset Description Format
7 64 0-63 Unused

In order to normalize precision, the polynomial has been curve-fit against log10 of the actual Raman
intensity scaling factors. Therefore, to generate and apply the scaling factors for each pixel, you would
do something like the following in application code (example taken from Wasatch.PY’s
wasatch.SpectrometerSettings.update_raman_intensity_factors):

https://github.com/WasatchPhotonics/Wasatch.PY/blob/master/wasatch/SpectrometerSettings.py

ENG-0034 Revised 30-Nov-2022

Rev. 15 11 of 15

@param eeprom (Input) populated wasatch.EEPROM object
@returns Raman intensity correction factors (one per pixel)
as 1D numpy array
def expand_raman_intensity_factors(eeprom):
 if 1 <= eeprom.raman_intensity_calibration_order <= 7:
 coeffs = eeprom.raman_intensity_coeffs
 if coeffs is not None:
 try:
 factors = []
 for pixel in range(self.pixels()):
 log10_factor = 0.0
 for i in range(len(coeffs)):
 x_to_i = math.pow(pixel, i)
 scaled = coeffs[i] * x_to_i
 log10_factor += scaled

 expanded = math.pow(10, log10_factor)
 factors.append(expanded)
 return numpy.array(factors, dtype=numpy.float64)
 except:
 print("error generating intensity factors")
 return None

@param spectrum (Input) uncorrected Raman spectrum as 1D
numpy array
@param factors (Input) Raman intensity correction factors
one per pixel) as 1D numpy array
@returns corrected Raman spectrum as 1D numpy array
def apply_ramman_intensity_factors(spectrum, factors):
 return spectrum * factors

4.2. Subformat 2: Advanced Wavelength Calibration Spline
This format is available for customers who wish to calibrate their spectrometer’s wavelength x-axis using
a cubic spline fit.

A typical n-point spline would include:

● n (the number of points in the spline)
● n floating-point wavelengths
● n floating-point y values
● n floating-point y2 values
● first and last valid wavelength (optional but recommended)

So a 12-point spline would need to store n itself (value 12, 1 byte), 3n floats for the spline points (144
bytes), plus 2 min/max floats (8 bytes), for 153 bytes. That doesn’t fit into two 64-byte pages, so for this
feature we’re rolling-in page 4 as well (normally reserved for User Data).

The spline wavecal would be expanded using the splint() function found in section 3.3 of Numerical
Recipes in C (1986) (reproduced here for posterity), where:

● xa = the array of wavelengths used to generate the spline (e.g., array of the 12 Wavelengthi
values)

● ya = array of y-values
● y2a = array of y2 (y’’) values
● n = size of the arrays (e.g. 12)
● x = the wavelength for which you want the corresponding fractional pixel generated

ENG-0034 Revised 30-Nov-2022

Rev. 15 12 of 15

(Note that spline wavecal is designed to generate pixel from wavelength, the opposite of our standard
wavelength calibration generation.)

float splint(float *xa, float *ya, float *y2a, int n, float x) {
 int klo = 0;
 int khi = n - 1;

 while (khi - klo > 1) {
 int k = (khi + klo) >> 1;
 if (xa[k] > x)
 khi = k;
 else
 klo = k;
 }

 float h = xa[khi] - xa[klo];
 if (h == 0.0)
 throw("Bad XA input");

 float a = (xa[khi] - x) / h;
 float b = (x - xa[klo]) / h;
 return a * ya[klo]
 + b * ya[khi]
 + ((a*a*a-a) * y2a[klo] + (b*b*b-b)*y2a[khi]) * (h*h)/6.0;
}

Page Size Offset Description Format
6 64 0 Spline Point Count (0 - 14) byte
 1-3 Unused
 4-7 Wavelength0 float32
 8-11 Y0 float32
 12-15 Y20 float32
 16-19 Wavelength1 float32
 20-23 Y1 float32
 24-27 Y21 float32
 28-31 Wavelength2 float32
 32-35 Y2 float32
 36-39 Y22 float32
 40-43 Wavelength3 float32
 44-47 Y3 float32
 48-51 Y23 float32
 52-55 Wavelength4 float32
 56-59 Y4 float32
 60-63 Y24 float32

ENG-0034 Revised 30-Nov-2022

Rev. 15 13 of 15

Page Size Offset Description Format
7 64 0-3 Wavelength5 float32
 4-7 Y5 float32
 8-11 Y25 float32
 12-15 Wavelength6 float32
 16-19 Y6 float32
 20-23 Y26 float32
 24-27 Wavelength7 float32
 28-31 Y7 float32
 32-35 Y27 float32
 36-39 Wavelength8 float32
 40-43 Y8 float32
 44-47 Y28 float32
 48-51 Wavelength9 float32
 52-55 Y9 float32
 56-59 Y29 float32
 60-63 Unused

Page Size Offset Description Format
4 64 0-3 Wavelength10 float32
 4-7 Y10 float32
 8-11 Y210 float32
 12-15 Wavelength11 float32
 16-19 Y11 float32
 20-23 Y211 float32
 24-27 Wavelength12 float32
 28-31 Y12 float32
 32-35 Y212 float32
 36-39 Wavelength13 float32
 40-43 Y13 float32
 44-47 Y213 float32
 48-55 Unused
 56-59 Wavelength Minimum float32
 60-63 Wavelength Maximum float32

ENG-0034 Revised 30-Nov-2022

Rev. 15 14 of 15

4.3. Subformat 3: Untethered Configuration
This format is used for spectrometers that can operate without active USB or BLE control.

Page 6 processing is exactly the same as subformat 1 (NIST SRM Raman Intensity Calibration).

Page Size Offset Description Format
7 64 0 libraryType uint8
 1-2 libraryID uint16
 3 scansToAverage uint8
 4 minRampPixels uint8
 5-6 minPeakHeight uint16
 7 matchThreshold uint8
 8 libraryCount uint8
 9 throwAwayCount uint8
 10-63 Unused

Pages 8-9 hold 16 byte character arrays that store loaded library names.

Page Size Offset Description Format
8 64 0-15 Library 1 Name char[16]
 16-31 Library 2 Name char[16]
 32-47 Library 3 Name char[16]
 48-63 Library 4 Name char[16]

Page Size Offset Description Format
9 64 0-15 Library 5 Name char[16]
 16-31 Library 6 Name char[16]
 32-47 Library 7 Name char[16]
 48-63 Library 8 Name char[16]

Pages 10-498 (61 pages (3904 bytes) per library entry x 8 entries, starting on page 10) are reserved for
library data.

ENG-0034 Revised 30-Nov-2022

Rev. 15 15 of 15

4.4. Subformat 4: Detector Regions
This format is used for spectrometers allowing the detector to be subdivided into multiple
independently addressible regions of interest. Note some Detector Region parameters are defined
elsewhere:

● R0C0-3: Wavecal Coeff 0-3
● R0X0: ROI Horizontal Start
● R0X1: ROI Horizontal End
● R0Y0: ROI Vertical Region 1 Start
● R0Y1: ROI Vertical Region 1 End
● R1Y0: ROI Vertical Region 2 Start
● R1Y1: ROI Vertical Region 2 End
● R2Y0: ROI Vertical Region 3 Start
● R2Y1: ROI Vertical Region 3 End

Page Size Offset Description Format
6 64 0-1 R1 X0 uint16
 2-3 R1 X1 uint16
 4-7 Wavecal Coeff R1C0 float32
 8-11 Wavecal Coeff R1C1 float32
 12-15 Wavecal Coeff R1C2 float32
 16-19 Wavecal Coeff R1C3 float32
 20-21 R2 X0 uint16
 22-23 R2 X1 uint16
 24-27 Wavecal Coeff R2C0 float32
 28-31 Wavecal Coeff R2C1 float32
 32-35 Wavecal Coeff R2C2 float32
 36-39 Wavecal Coeff R2C3 float32
 40-41 R3 Y0 uint16
 42-43 R3 Y1 uint16
 44-45 R3 X0 uint16
 46-47 R3 X1 uint16
 48-51 Wavecal Coeff R3C0 float32
 52-55 Wavecal Coeff R3C1 float32
 56-59 Wavecal Coeff R3C2 float32
 60-63 Wavecal Coeff R3C3 float32

Page Size Offset Description Format
7 64 0 regionCount uint8
 1-63 unused

	1. General Description
	1.1. USB PID
	1.2. Other sources of information
	1.3. Software Driver Libraries

	2. Field Definitions
	2.1. Feature Mask
	2.2. Light Source Type

	3. EEPROM Page Structure
	4. Custom EEPROM Structure
	4.1. Subformat 1: NIST SRM Raman Intensity Calibration
	4.2. Subformat 2: Advanced Wavelength Calibration Spline
	4.3. Subformat 3: Untethered Configuration
	4.4. Subformat 4: Detector Regions

