

ENG-0001 USB FID ICD

Interface Control Document (ICD)
for Feature Identification Device (FID)
USB Spectrometers

Revision 1.15

Mar 18, 2022

ENG-0001 Rev 1.15 USB device drivers

Mar 18, 2022 Page 2 of 94

Contents

REVISION LOG .. 4

1 GENERAL DESCRIPTION .. 5

2 USB CONNECTION TO DEVICE ... 6

2.1 USB DEVICE DRIVERS .. 7

2.2 LIBUSB-WIN32 DRIVERS .. 8

3 COMMAND MATRIX ... 11

3.1 COMMAND TABLE ... 13

4 COMMAND DETAIL .. 18

4.1 METADATA... 19

4.2 EEPROM CONTROL .. 22

4.3 SPECTRAL ACQUISITION .. 24

4.4 INTEGRATION TIME CONTROL .. 26

4.5 DETECTOR GAIN AND OFFSET CONTROL... 29

4.6 LASER CONTROL .. 34

4.7 MODULATION CONTROL ... 42

4.8 ACCESSORY CONNECTOR CONTROL ... 50

4.9 LAMP CONTROL .. 51

4.10 DETECTOR TEMPERATURE CONTROL ... 53

4.11 TRIGGER CONTROL... 57

4.12 HIGH-GAIN MODE... 60

4.13 BATTERY CONTROL .. 62

4.14 RAMAN MODE AND LASER WATCHDOG... 63

4.15 AREA SCAN AND DETECTOR ROI .. 67

4.16 SHUTTER CONTROL .. 73

4.17 FAN CONTROL... 74

4.18 AMBIENT TEMPERATURE ... 75

4.19 UNTETHERED DEVICES .. 77

4.20 BOARD STATE ... 79

4.21 HORIZONTAL BINNING COMMANDS (DEPRECATED) ... 81

4.22 SENSOR DATA THRESHOLD COMMANDS (DEPRECATED) ... 83

4.23 CONTINUOUS ACQUISITION (DEPRECATED) .. 85

5 ACQUISITION WORKFLOWS .. 87

5.1 SPECTRAL ACQUISITION .. 88

5.2 SOFTWARE-COMMANDED USB ACQUISITION (INTERNAL LASER @ 100% POWER) .. 89

ENG-0001 Rev 1.15 USB device drivers

Mar 18, 2022 Page 3 of 94

5.3 SOFTWARE-COMMANDED USB ACQUISITION (EXTERNAL LASER @ 50% POWER).. 90

5.4 EXTERNALLY TRIGGERED ACQUISITION ... 91

6 DETECTOR TIMING AND EXTERNAL LASER TRIGGERING ... 93

ENG-0001 Rev 1.15 USB device drivers

Mar 18, 2022 Page 4 of 94

Revision Log

Doc # Date Author Description Rev.

ENG-1 9/25/14 S. Trani Initial Release 1.0

 8/11/15 J. Dreitzler Add second tier commands, model
configuration and feature identification

1.1

 10/6/15 J. Dreitzler Corrected model configuration format

Multiple changes to align commands for FX2
and ARM-based products

1.2

 10/20/15 J. Dreitzler Added additional commands 1.3

 1/25/17 J. Traud Formatting, cleanup, and preparation for
public release.

1.4

 10/2/17 J. Traud Removed customer specific references 1.5

 10/8/17 J. Traud Removed legacy and development
command references no longer valid in
current firmware branch

1.6

 8/24/18 M. Zieg Update to reflect current firmware 1.7

 10/18/19 M. Zieg

R.
Dickerson

Added battery commands

Added Get/Set CCD Start/Stop Line

1.8

 March,
2020

M. Zieg Added Raman Mode, Raman Delay and
Laser Watchdog

1.9

 Feb 3, 2021 M. Zieg

B. Williams

Added Area Scan, Accessory Connector,
Even/Odd Gain/Offset

1.10

 Feb 15,
2021

M. Zieg Refactored section 4 (commands) into
structured categories

1.11

 Feb 25,
2021

M. Zieg

B. Williams

Added Lamp Enable, Ambient Temperature,
Fan Control; updated Modulation Linked to
Integration, Modulation Pulse Delay

1.12

 Mar 3, 2021 M. Zieg Updated GET_MOD_PERIOD endianness,
refactored Modulation section

1.13

 Apr 14,
2021

M. Zieg

N. Baron

Added untethered opcodes 1.14

 Nov 2, 2021 N. Baron

E. Dort

M. Zieg

B. Williams

J. Wach

L. Brady

Added opcodes for Untethered Capture
Status; updated Gen 1.5; added Detector
ROI, Pixel Mode; Laser Interlock

1.15

ENG-0001 Rev 1.15 USB device drivers

Mar 18, 2022 Page 5 of 94

1 General Description
This document describes the USB (Universal Serial Bus) API (Application Programming Interface)
for all USB-based Wasatch Photonics Raman and non-Raman (UVVIS, VIS, VISNIR, NIR)
spectrometers, whether benchtop or micro form-factor. It does not apply to spectrometers
intended for the OCT market such as the Cobra series.

The USB data interface for the Wasatch spectrometer is USB 2.0 compliant. FX2-based
spectrometers operate at High Speed (480Mbps) or Full Speed (12Mbps) depending on model,
while ARM-based spectrometers currently operate at Full Speed.

Control commands are sent as Vendor Requests (hence the “VR_” suffix on some commands),
and the response is read on endpoint 0. The key exception is when reading spectra (with or
without triggering), in which the response data is returned on the bulk-output endpoint 2 (and
endpoint 6 for 2048-pixel detectors on FX2).

ENG-0001 Rev 1.15 USB device drivers

Mar 18, 2022 Page 6 of 94

2 USB Connection to device
The spectrometer appears as a USB device with Vendor Identification code (VID) 0x24aa and a

Product Identification code (PID) that corresponds to one of three supported values
representing Feature Identification Device (FID) models. PIDs used for feature identification
include:

• 0x1000 (FX2 Hamamatsu silicon detector)

• 0x2000 (FX2 Hamamatsu InGaAs detector)

• 0x4000 (ARM-based spectrometer, e.g. SiG)

ENG-0001 Rev 1.15 USB device drivers

Mar 18, 2022 Page 7 of 94

2.1 USB device drivers

Wasatch Photonics spectrometers communicate primarily via USB. There are many low-level
USB drivers available, including the open-source libusb (Linux/MacOS) and libusb-win32
(Windows), Microsoft’s WinUSB.sys, Cypress’ CyUSB etc. Technically, any USB library can be
used to communicate with Wasatch spectrometers by following the documentation of that
driver and our USB hardware/firmware API. (For Windows, you’d need a custom .inf file to
point to a driver other than libusb-win32.)

However, associating a USB VID/PID with a particular device can be a tricky process (sometimes
requiring convoluted procedures to digitally “sign” a driver), and it is typically easiest to use a
supported vendor driver combination.

For Microsoft Windows, Wasatch recommends the libusb-win32 library
(https://sourceforge.net/p/libusb-win32), which is based on libusb-0.1. For Linux and MacOS,
Wasatch recommends libusb-0.1. Wasatch has no current plans to switch to libusb-1.0 (or its
associated “libusb Windows”), but may do so if/when performance and required features
dictate.

The open-source libusb-win32 library officially supports Windows XP, Windows Vista, Windows
7 (x86/x64) and Windows 10 (x86/x64). It has been tested internally by Wasatch on XP (x86),
Vista (x64), Windows 7 (x86/x64) and Windows 10 (x86/x64).

Note that there is a distinction between “low-level” USB drivers like libusb, and “high-level
application drivers” like Wasatch.PY or Wasatch.NET. Low-level USB drivers provide byte-level
communication between the host PC and the hardware peripheral. Higher-level application
drivers run atop lower-level USB drivers, and automate common operations by “wrapping”
complex multi-step procedures into simple function calls (hiding the marshalling/demarshalling
of arguments, endian issues etc).

If you are interested in developing your spectroscopy application against our high-level drivers
(rather than using the low-level USB API defined in this document), please see:

https://wasatchphotonics.com/software-drivers/

https://sourceforge.net/p/libusb-win32
https://wasatchphotonics.com/software-drivers/

ENG-0001 Rev 1.15 libusb-win32 drivers

Mar 18, 2022 Page 8 of 94

2.2 libusb-win32 drivers

Detailed command descriptions of the libusb-win32 library can be found here (at writing):

https://sourceforge.net/p/libusb-win32/wiki/Documentation/

Open-source examples showing how to connect to Wasatch spectrometers through libusb can
be found here, and in other published Wasatch Photonics sample code:

• C/C++: https://github.com/WasatchPhotonics/Wasatch.VCPP

• Python: https://github.com/WasatchPhotonics/Wasatch.PY

• C#: https://github.com/WasatchPhotonics/Wasatch.NET

2.2.1 C Example

A standard C routine to open and return a device handle to the spectrometer is as follows:

#define MY_VID 0x24aa // Wasatch Photonics
#define MY_PID 0x1000 // will depend on model
usb_dev_handle* open_dev(void) {
 usb_init();
 usb_find_busses();
 usb_find_devices();
 for (struct usb_bus *bus = usb_get_busses(); bus; bus = bus->next)
 for (struct usb_device *dev = bus->devices; dev; dev = dev->next)
 if (dev->descriptor.idVendor == MY_VID
 && dev->descriptor.idProduct == MY_PID)
 return usb_open(dev);
 return NULL;
}

On POSIX, two other commands are needed to properly configure the device:

usb_set_configuration(dev, 1) // sets active configuration to 1
usb_claim_interface(dev, 0) // claims interface 0

where dev is a device handle returned by open_dev().

At this point standard control message commands described below can be sent to the device.
A control message has the following format:

int usb_control_msg(
 usb_dev_handle *dev,
 uint8_t bmRequestType,
 uint16_t bRequest,
 uint16_t wValue,
 uint16_t wIndex,
 char *bytes,
 int size,
 int timeout);

https://sourceforge.net/p/libusb-win32/wiki/Documentation/
https://github.com/WasatchPhotonics/Wasatch.VCPP
https://github.com/WasatchPhotonics/Wasatch.PY
https://github.com/WasatchPhotonics/Wasatch.NET

ENG-0001 Rev 1.15 libusb-win32 drivers

Mar 18, 2022 Page 9 of 94

Following are explanations of each the parameters in the above call, which are representative
of what you will find in any low-level USB driver library, as they map directly to the protocol’s
standard field names and datatypes for USB Control Packets.

• dev: handle returned by usb_open()

• bmRequestType: bitmap, typically 0x40 for host-to-device “commands,” or 0xC0 for
device-to-host “requests” (queries).

• bRequest: bRequest field in the setup packet. bRequest represents the specific
command or ‘opcode’ being sent to the spectrometer, and most of this document is
focused on identifying the different bRequest values and what they do.

• wValue: value field in the setup packet. Often used to send parameters of a command.

• wIndex: index field in the setup packet. Also, often used to send high-order byte
information as parameter of command.

• bytes: up to 64-byte data packet associated with control message. Used in some set
commands to represent higher order parameter bytes. Unless specified, can be sent as
NULL pointer on FX2-based models, although ARM-based spectrometer commands
assume it will hold an 8-byte buffer of zeros even if unused.

o Note: Commands taking uint40 parameters (such as used for laser modulation)
will typically send the most-significant of the 5 parameter bytes as the first
(data[0]) byte of the data payload, while sending the least-significant bytes in the
wValue field, and the middle-significant bytes in the wIndex field.

• size: size of bytes data packet buffer. Can be zero if a NULL data packet reference is
used.

• timeout: time before timing out if an error occurs in milliseconds.

Note that while Wasatch Photonics does not always use type-prefixes in variable names (i.e.
“Hungarian Notation”), it is worth understanding the prefixes used in the above parameters:

• bm = “bitmask,” indicating one byte encapsulating multiple other sub-byte values (up to
8 individual bits)

• b = “byte,” an unsigned integral value 0-255 (28-1)

• w = “word,” an unsigned integral value 0-65535 (216-1)

For instance, to set the integration time to 100ms (see SET_INTEGRATION_TIME below), one
would execute:

char *buf = {0, 0, 0, 0, 0, 0, 0, 0};
int ret = usb_control_msg(dev,
 0x40, // host to device request
 0xb2, // “Set Integration Time” bRequest
 100, // ms & 0xffff
 0, // (ms >> 16) & 0xffff
 buf, // payload buffer
 sizeof(buf), // size of buffer
 1000); // USB timeout in ms

https://www.beyondlogic.org/usbnutshell/usb6.shtml
https://en.wikipedia.org/wiki/Hungarian_notation

ENG-0001 Rev 1.15 libusb-win32 drivers

Mar 18, 2022 Page 10 of 94

The above should return a value in ret of 0, which means there was no error. A ret value < 0
indicates an error occurred. Please see libusb-0.1 documentation as a reference to the error
codes. (Note that opcode response values may vary between FX2 and ARM platforms; see
opcode table below.)

To get the integration time which the spectrometer is currently using, the following code can be
used:

char *buf = {0, 0, 0, 0, 0, 0, 0, 0}; // 8 bytes for ARM
int ret = usb_control_msg(dev,
 0xC0, // device to host request
 0xbf, // "Get Integration Time" bRequest
 0, // Doesn't matter
 0, // Doesn't matter
 buf, // output response buffer
 sizeof(buf), // size of buf array
 1000); // timeout in ms

According to the documentation for “Get Integration Time”, 6 bytes will be returned on
endpoint 0 and end up in buf in LSB order; however, according to the documentation, only the
first 3 bytes are used. To parse the integration time, one may use the following code snippet:

uint integration_time = buf[0] | (buf[1]<<8) | (buf[2]<<16);

A more complete C/C++ example, which can be compiled and tested from both Windows
(Visual Studio) and Linux (GCC), can be found in the following open-source project:

https://github.com/WasatchPhotonics/Wasatch.VCPP

https://github.com/WasatchPhotonics/Wasatch.VCPP

ENG-0001 Rev 1.15 libusb-win32 drivers

Mar 18, 2022 Page 11 of 94

3 Command Matrix
In the following table of supported USB commands (or “opcodes”), columns are defined as follows:

• Getter/Setter: Most spectrometer features have both “get” and “set” versions. Some features can only be read (e.g.
COMPILATION_OPTIONS) while others can only be written (e.g. FPGA_RESET).

• Data Type: indicates the datatype of the primary data value read or written by the command.
o uint8/12/16/24/40 indicate bit width of the given unsigned integral value.

▪ Note that when writing “uint40” parameters, used by laser modulation and continuous strobe features, the
integral value is split across the USB Control Packet’s wValue, wIndex and payload[0] fields in little-endian
sequence.

▪ For example, the hexadecimal value 0x0123456789 (representing 4886718345µs, or about 1.36hr) would be
sent as wValue = 0x6789, wIndex = 0x2345 and payload[0] = 0x01.

▪ Likewise, uint24 values (such as used to set integration time in milliseconds) are written with the least-
significant word in wValue, and the most-significant byte in wIndex. For example, 0x123456 (decimal
1193046ms, or about 20min) would be sent as wValue 0x3456 and wIndex 0x0012.

o bool indicates only values of 1 or 0 are supported (other values yield undefined behavior)
o float16 is a custom floating-point format in which the MSB represents an integral value (0-255) and the LSB is to be

divided by 256 to represent a fractional component.
▪ For example, the value 0x1234 would be parsed as MSB 0x12 (dec 18), and LSB 0x34 (b0011 0100) as 1/8 +

1/16 + 1/64 = 13/64 = dec 0.203125. Therefore, a detector gain of 0x1234 would cause each pixel’s intensity
to be scaled by 18.203125 on CCD detectors (or indicate 18.2 dB on CMOS)

▪ To be clear, it is not an IEEE 754 half-precision float; it is conceptually similar to an unsigned bfloat16.
▪ See Set Detector Gain (SET_DETECTOR_GAIN) for details.

o byte[] arrays are passed as literal sequences of bytes
o string[] are sequences of ASCII characters (similar to byte[], but assumed to be non-null printable 7-bit ASCII

characters). Strings can be optionally null-terminated if less than the length of their allocated field, but are not
necessarily null-terminated if of the maximum field length. (I.e., a 15-char serial number should have a trailing ‘\0’ in
the 16th element, but a 16-char serial number can fill the EEPROM field with no terminator.) Any characters following
a null are ignored by Wasatch drivers.

o enum indicate the argument is technically a uint8 octet (byte), but see the “Enums” column for interpretations of
supported zero-indexed values

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

ENG-0001 Rev 1.15 libusb-win32 drivers

Mar 18, 2022 Page 12 of 94

o void indicates the opcode does not take or return a primary data value

• 2nd Tier: So-called “second-tier” commands all share a bRequest of 0xff, and send the “opcode” as the wValue field, with the
primary parameter in wIndex. In contrast, normal (non-2nd-tier) commands send the opcode as bRequest, and send the
primary parameter in wValue.

• Read Length: how many bytes of useful information you should get back from the getter.

• Read-Back Length: if provided, you should actually read this many bytes back from the USB bus to flush the output buffer;
however, only the first “Read Length” bytes will contain useful data.

• Fake “Get” Buffer Length: how many bytes you should pass as an “output buffer” when calling the getter, even though
getters nominally don’t use output buffers. (This deals with some legacy bugs in old firmware; no current spectrometer
firmware is believed to exhibit this behavior.)

• Getter Endianness: some commands return their data LSB-first (little endian), while others return data MSB-first (big endian).
Many return only a single byte, such that endianness does not come into play. Some commands may express a different
endianness on different chip architectures. (To be clear, we are using endianness to refer to the order of BYTES, not the
order of BITS within a byte; octets are transmitted atomically over USB, and will always have big-endian bit order on the host
and microcontroller.)

• Enums: supported values for the “enum” Data Type.

• Supports: some commands only work on models with InGaAs detectors, FX2 or ARM microcontrollers, WP-XS models,
untethered (UT) etc.

• Requires Laser: laser-related commands should not be executed on models without internal lasers, or undefined behavior
may occur.

• Notes: additional comments about individual commands.
o “Deprecated” indicates a feature is no longer recommended for use in shipping models and may not be functional. In

some cases “deprecated” may mean that we are not actively testing this feature, but that it can be restored to fully
supported use given customer interest.

o “Developmental” means a feature is in development, but not yet fully released and may not be functional.

Previously-supported deprecated commands in the following table have been marked deprecated and struckout.

ENG-0001 Rev 1.15 Command Table

Mar 18, 2022 Page 13 of 94

3.1 Command Table

Table 1 FID Opcodes

Name Getter Setter Data
Type

2nd
Tier

Read
Len

Read
Back
Len

Fake
Get
Buf
Len

Getter
Endian

Enums Supports Req.
Laser

Notes

ACCESSORY_ENABLE 0x39 0x38 bool 1 (Gen1.5)

ACQUIRE_SPECTRUM 0xad

void

8 NA

response read back
on bulk endpoint 2
(and 6 for 2048px
detectors)

ACTUAL_FRAMES 0xe4

uint16 2

MSB

ACTUAL_INTEGRATION_TIME 0xdf

uint24 3 6

LSB

response of 0xffffff
indicates error

AMBIENT_TEMPERATURE 0x35 int16 2 MSB (Gen1.5)

AREA_SCAN_ENABLE 0xeb bool NA

BATTERY_STATE 0x13 mask Y 3 MSB (XS)

BATTERY_REG 0x14 uint16 Y 2 ?? (XS)

COMPILATION_OPTIONS 0x04

Y

8 LSB

CONTINUOUS_ACQUISITION 0xcc 0xc8 bool 1

NA

CONTINUOUS_FRAMES 0xcd 0xc9 uint8 1

NA

DETECTOR_GAIN 0xc5 0xb7 float16 2

LSB

half-precision float
(MSB is integer, LSB
is fraction)

DETECTOR_GAIN_ODD 0x9f 0x9d float16 2 LSB (InGaAs) On InGaAs sets gain
on odd-numbered
pixels

DETECTOR_OFFSET 0xc4 0xb6 uint16 2

LSB

ENG-0001 Rev 1.15 Command Table

Mar 18, 2022 Page 14 of 94

Name Getter Setter Data
Type

2nd
Tier

Read
Len

Read
Back
Len

Fake
Get
Buf
Len

Getter
Endian

Enums Supports Req.
Laser

Notes

DETECTOR_OFFSET_ODD 0x9e 0x9c uint16 2 LSB (InGaAs) On InGaAs sets
offset on odd-
numbered pixels

DETECTOR_ROI 0x25 uint16[4] Y NA (XS)

DETECTOR_SENSING_THRESHOLD 0xd1 0xd0 uint16 2

LSB

DETECTOR_START_LINE 0x22 0x21 uint16 Y 2 2 LSB (XS)

DETECTOR_STOP_LINE 0x24 0x23 uint16 Y 2 2 LSB (XS)

DETECTOR_TEC_ENABLE 0xda 0xd6 bool 1

NA

DETECTOR_TEC_SETPOINT 0xd9 0xd8 uint16 2

LSB

DETECTOR_TEMPERATURE 0xd7

uint16 2

MSB

Raw 12-bit ADC
output from the
TEC

DETECTOR_THRESHOLD_SENSING_MODE 0xcf 0xce bool 1

NA

DFU_MODE

0xfe void

NA

(ARM)

DFU = “Dynamic
Firmware
Upgrade”;
configures STM32
to accept firmware
updates via DfuSe
Demonstrator

ERASE_STORAGE 0x26 Y (UT)

FAN_ENABLE 0x37 0x36 bool 1 NA (Gen1.5)

FEEDBACK 0x27 Y NA (UT)

FIRMWARE_VERSION 0xc0

byte[] 4

LSB

bytes read-out
backwards (0xaa bb
cc dd] means
version
dd.cc.bb.aa)

FPGA_FIRMWARE_VERSION 0xb4

string 7

MSB

ENG-0001 Rev 1.15 Command Table

Mar 18, 2022 Page 15 of 94

Name Getter Setter Data
Type

2nd
Tier

Read
Len

Read
Back
Len

Fake
Get
Buf
Len

Getter
Endian

Enums Supports Req.
Laser

Notes

HIGH_GAIN_MODE_ENABLE 0xec 0xeb bool 1

NA

(InGaAs)

HORIZONTAL_BINNING 0xbc 0xb8 enum 1

NA (NONE,
TWO_PIXEL,
FOUR_PIXEL)

(ARM)

INTEGRATION_TIME 0xbf 0xb2 uint24 3

LSB

sent as 32-bit word
(LSW wValue, MSW
wIndex, big-endian
within each)

LAMP_ENABLE 0x33 0x32 bool 1 NA (Gen1.5)

LASER_ENABLE 0xe2 0xbe bool 1

NA

* * Used as
STROBE_ENABLE
on Gen 1.5 non-
Raman

LASER_INTERLOCK 0xef bool 1 NA (FX2) TRUE developmental

LASER_IS_FIRING 0x0d

bool Y 1

NA

(FX2) TRUE developmental

LASER_RAMPING_MODE 0xea 0xe9 bool 1 NA (ARM) TRUE

LASER_TEC_SETPOINT 0xe8 0xe7 uint12 1

8 NA

(ARM) TRUE setter takes value
in range (63, 127)

LASER_TEMPERATURE 0xd5

uint16 2

LSB

TRUE developmental

LASER_WATCHDOG 0x15 0x16 uint16 Y 2

??

(XS) TRUE developmental

LINE_LENGTH 0x03 uint16 Y 2 LSB

MOD_DURATION 0xc3 0xb9 uint40 5

LSB

TRUE

MOD_ENABLE 0xe3 0xbd bool 1

8 NA

Used for laser
power on Raman
models, and
continuous strobe
in non-Raman Gen
1.5 models.

MOD_LINKED_TO_INTEGRATION 0xde 0xdd bool 1

NA

ENG-0001 Rev 1.15 Command Table

Mar 18, 2022 Page 16 of 94

Name Getter Setter Data
Type

2nd
Tier

Read
Len

Read
Back
Len

Fake
Get
Buf
Len

Getter
Endian

Enums Supports Req.
Laser

Notes

MOD_PULSE_PERIOD 0xcb 0xc7 uint40 5 LSB Used for laser
power on Raman
models, and
continuous strobe
in non-Raman Gen
1.5 models.

* API differs
significantly
between FX2 and
ARM; see detailed
description

MOD_PULSE_DELAY 0xca 0xc6 uint40 5

LSB

MOD_PULSE_WIDTH 0xdc 0xdb uint40 5

LSB

MODEL_CONFIG 0x01 0xa2
or
0x02

byte[] * 64

MSB

OPT_ACTUAL_INTEGRATION_TIME 0x0b

bool Y 1

8 NA

OPT_AREA_SCAN 0x0a

bool Y 1

8 NA

developmental

OPT_CF_SELECT 0x07

bool Y 1

8 NA

OPT_DATA_HEADER_TAB 0x06

enum Y 1

8 NA (NONE, OCEAN
OPTICS,
WASATCH)

OPT_HORIZONTAL_BINNING 0x0c

bool Y 1

NA

OPT_INTEGRATION_TIME_RESOLUTION 0x05

enum Y 1

NA (ONE MS, TEN
MS,
SWITCHABLE)

OPT_LASER_TYPE 0x08

enum Y 1

NA (NONE,
INTERNAL,
EXTERNAL)

OPT_LASER_CONTROL 0x09

enum Y 1

NA (MODULATION,
TRANSITION
POINTS,
RAMPING)

PIXEL_MODE

0xfd

NA

(XS)

developmental

ENG-0001 Rev 1.15 Command Table

Mar 18, 2022 Page 17 of 94

Name Getter Setter Data
Type

2nd
Tier

Read
Len

Read
Back
Len

Fake
Get
Buf
Len

Getter
Endian

Enums Supports Req.
Laser

Notes

RAMAN_DELAY 0x19 0x20 uint16 Y 2

NA

 (XS) TRUE developmental

RAMAN_MODE 0x17 0x18 bool Y 1

NA

(XS) TRUE developmental

RESET_FPGA

0xb5 void

NA

attempts to
perform a runtime
reset (power cycle)
of the FPGA

SELECTED_ADC 0xee 0xed enum 1

NA (PRIMARY,
SECONDARY)

Typically laser
thermistor or
photodiode if
present

SHUTTER_ENABLE 0x31 0x30 bool

NA

(Gen1.5)

STORAGE_BLOCK 0x25 byte[] Y NA (UT)

TRIGGER_DELAY 0xab 0xaa uint24 3 LSB (ARM) Delay is in 0.5us,
supports 24-bit
unsigned value
(about 8.3sec max)

TRIGGER_FEEDBACK

0x27

Y

NA

(UT)

TRIGGER_OUTPUT 0xe1 0xe0 enum 1 NA (LASER
MODULATION,
INTEGRATION
ACTIVE PULSE)

TRIGGER_SOURCE 0xd3 0xd2 enum 1

NA (USB,
EXTERNAL)

UNTETHERED_CAPTURE_STATUS 0xd4

enum 1

 (IDLE, DARK,
WARMUP,
SAMPLE,
PROCESSING)

(XS)

ENG-0001 Rev 1.15 Command Table

Mar 18, 2022 Page 18 of 94

4 Command Detail
Following are the valid commands for the USB interface. All commands are sent as Vendor
Requests.

The USB Packet “payload” for “set” commands can generally be a NULL pointer. There are two
noteable exceptions to this:

1. For ARM-based spectrometers, all commands require a payload of at least 8 bytes.
These can be set to zero, and the value of these bytes does not affect command
operation, but the buffer must be present.

2. Some commands which take a bigger numeric parameter than will fit in the combined
32 bits afforded by the combined wValue and wIndex 16-bit fields, will “overflow” into
the payload vector. The primary example for this is the uint40 fields used by laser
modulation and continuous strobe.

In this section’s tables, note the following:

• bmRequestType: “bm” stands for “bitmask”, as bmRequestType marshalls together the
following 3 values:

7 6 5 4 3 2 1 0

Bit 7: Data Phase Direction (0 = HOST → DEVICE, 1 = DEVICE → HOST)
Bits 6-5: Type (0x2 = Vendor)
Bits 4-0: Recipient (0x0 = Device)

All bmRequestType values in our ICD will be either 0x40 (setters, i.e. commands from
the host) or 0xC0 (getters, i.e. requests from the host)

• Uint40 values (40-bit unsigned ints) are passed by sending the LSW (Least Significant
Word) as wValue, the next 16 bits as wIndex, and the MSB (Most Significant Byte) in the
first byte of the payload record. For legacy reasons, the payload record itself should
normally be 8 bytes in length; the value of the other 7 bytes does not matter and can be
zero.

• Uint24 (24-bit unsigned ints) are passed by sending the LSW in wValue, and the MSB in
the least-significant 8 bits of wIndex (the upper half of wIndex is ignored and can be left
zero).

ENG-0001 Rev 1.15 Metadata

Mar 18, 2022 Page 19 of 94

4.1 Metadata

These commands help you find out about the spectrometer to which you’re connected,
including available features, options, installed firmware etc.

4.1.1 Get Microcontroller Firmware Version (GET_FIRMWARE_VERSION)

The command reads the firmware version of the FX2 or ARM microcontroller.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xC0 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

You could render the returned firmware version into an ASCII string using code such as the following:

char version[16];
snprintf(version, sizeof(version), "%u.%u.%u.%u",
 data[3], data[2], data[1], data[0]);

Response

The response is four bytes. The response is LSB-first, so if you read [0xaa, 0xbb, 0xcc, 0xdd] that
indicates firmware version dd.cc.bb.aa.

4.1.2 Get FPGA Firmware Revision (GET_FPGA_FIRMWARE_VERSION)

Reads the revision of the FPGA firmware code.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xB4 Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

The FPGA revision will appear as seven bytes of ASCII codes on endpoint 0. Returns value < 0 if
unsuccessful.

ENG-0001 Rev 1.15 Metadata

Mar 18, 2022 Page 20 of 94

4.1.3 Get Sensor Line Length (GET_LINE_LENGTH)

Gets the size of the sensor line (number of pixels in the returned spectrum). This value should
agree with the configured EEPROM field active_horizontal_pixels or undefined behavior may
result.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x03 Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 2 Payload size

Response

Returns the size of a sensor line in pixels (2 bytes, LSB first).

4.1.4 Get FPGA Compilation Options (READ_COMPILATION_OPTIONS)

Gets the FPGA compilation options register.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xFF Second tier command

2 wValue 2 0x04 Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 2 Payload size

Response

Two bytes of FPGA compilation options. See ENG-0034 documentation for table showing field
structure within the returned 16-bit mask.

ENG-0001 Rev 1.15 Metadata

Mar 18, 2022 Page 21 of 94

4.1.5 Get Internal Frame Count (GET_ACTUAL_FRAMES)

This command returns the internal frame/capture count. It is incremented based on internal
(USB-command) captures and external trigger-based captures. It is reset to 0 upon power up,
or on rollover as the UInt16 maximum value is exceeded.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device →Host
1 bRequest 1 0xE4 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

This command outputs two bytes containing the current frame count as a uint16 of unclear
endianness.

4.1.6 Get Data Header or Tag (GET_OPT_DATA_HEADER_TAG)

Gets the data header or tag option from the FPGA compilation options register.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command

2 wValue 2 0x06 Value
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte containing:

• 0 = no header or tag

• 1 = Ocean Optics “OceanBinaryProtocol” (OBP) header and tag

• 2 = Wasatch tag

ENG-0001 Rev 1.15 EEPROM Control

Mar 18, 2022 Page 22 of 94

4.2 EEPROM Control

4.2.1 Get Model Info (GET_MODEL_CONFIG)

The command reads the model configuration information stored on the spectrometer’s
EEPROM. This data includes the serial number, model, wavelength calibration, temperature
coefficients and many other key attributes defining the runtime abilities, limitations and
defaults of the spectrometer.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x0001 Value

4 wIndex 2 Page index (0-7) See ENG-0034 for EEPROM page
indices and their contents

6 wLength 2 64 Payload size

Response

This command returns 64 bytes (the size of a single EEPROM page). Refer to ENG-0034 for
appropriate parsing and demarshalling of a particular page’s contents, and the number of
supported pages.

4.2.2 Set Model Info (SET_MODEL_CONFIG)

The command stores the model configuration information, dynamically overwriting the internal
EEPROM.

This is one of the most dangerous commands in the API, because improperly-formatted
EEPROM pages, or fields containing out-of-range values, could corrupt, “brick” (render
uncommunicative), physically damage your spectrometer (by overheating / overclocking
components) or even risk human injury (if laser settings are impacted).

Users are highly advised not to alter the contents of their EEPROM without using purpose-built,
approved and tested tools released by Wasatch Photonics. Any unsupported alterations to the
EEPROM will void the spectrometer warranty and may require factory RMA.

Note that commands to write the EEPROM differ between FX2 and ARM architectures.

ENG-0001 Rev 1.15 EEPROM Control

Mar 18, 2022 Page 23 of 94

Format (FX2)

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xa2 bRequest

2 wValue 2 0x3c00 +
(64 x
page_index)

See ENG-0034 for EEPROM page
contents and marshalling
instructions

4 wIndex 2 0 wIndex (not used)

6 wLength 2 64 Payload size

Example: to write EEPROM page 3 (the fourth zero-indexed page of 64 bytes):

wValue = 0x3c00 + (64 x 3) = 0x3cc0

Format (ARM)

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xff Second-tier bRequest

2 wValue 2 0x02 opcode
4 wIndex 2 0-7 EEPROM page index

6 wLength 2 64 Payload size

Response

Returns 1 if command was successful. Returns value 0 if unsuccessful.

ENG-0001 Rev 1.15 Spectral Acquisition

Mar 18, 2022 Page 24 of 94

4.3 Spectral Acquisition

4.3.1 Acquire Spectrum (ACQUIRE)

Commands the detector to generate or send a new measurement using the currently-applied
integration time, gain/offset etc.

On Wasatch spectrometers with Hamamatsu detectors, an ACQUIRE command will instruct the
spectrometer to START a NEW acquisition. That acquisition will not be available for readout
over USB for at least the length of the current integration time, as the full integration will occur
AFTER the ACQUIRE command is received.

On Sony IMX-based spectrometers, the sensor is continually acquiring in a “free-running” mode
(but not attempting to send most acquisitions to the host over USB). On those spectrometers,
the ACQUIRE command will instruct the spectrometer to send the NEXT COMPLETED
acquisition to the host over USB. Therefore, the measurement could be returned anywhere
from “immediately” (if the background continuous acquisition had almost completed when the
ACQUIRE command arrived) to a full integration time thereafter.

In Area Scan mode, one ACQUIRE command will generate a series of spectral readouts on the
bulk endpoints (should be as many as listed in the EEPROM active_pixels_vertical field).

On untethered devices, wValue may be used to indicate “acquisition type” if different types are
supported.

In Multiple-ROI mode, the number of pixels output will be the sum of configured horizontal
ROIs (so in the example given for SET_DETECTOR_ROI, 1001 + 1101 = 2102 pixels would be
output, representing the vertically binned concatenated results of region 0 and 1 respectively).

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xAD Request

2 wValue 2 0xXXXX Acquisition Type (default zero)

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Unlike most other spectrometer commands, the response for this command is not returned on
the same “Control Endpoint 0” used to issue the command. Spectrometers with detectors of
1024 or fewer pixels will find all pixels returned as uint16 (LSB-first) values on bulk-output
endpoint 2 (0x82). That is, 1024-pixel detectors will return 2048 bytes, while 512-pixel
detectors will return 1024 bytes, etc.

FX2-based models with with 2048 pixels will output the first half of the spectrum on endpoint 2
as described above, and the second half on endpoint 6 (0x86).

ENG-0001 Rev 1.15 Spectral Acquisition

Mar 18, 2022 Page 25 of 94

ARM-based spectrometers output all pixels on endpoint 2 (0x82), regardless of pixel count or
configured Region of Interest.

It is important to recognize that the spectrum will be returned over USB in detector pixel order,
which is not necessarily spectral order (wavelength or wavenumber). Older Wasatch
spectrometers consistently returned spectral data in increasing order of wavelength, essentially
“blue to red” when read left-to-right. For optomechanical reasons, many newer designs mount
the detector “upside down” with respect to the grating diffraction order, such that the physical
order of pixel data (counting pixels from 0-1023 etc) will be in decreasing order by wavelength
(red to blue).

There is a boolean flag called “invertXAxis” in the “featureMask” EEPROM field (documented in
ENG-0034) which specifies whether the receiving software library should reverse the order of
uint16 pixels received to restore a consistent “blue-to-red” increasing wavelength order. In
general Wasatch-supplied driver libraries (Wasatch.NET/PY/VCPP/etc) will automate this
processing and always deliver consistently-ordered spectra from calls to “getSpectrum()”
regardless of spectrometer model or hardware design.

ENG-0001 Rev 1.15 Integration Time Control

Mar 18, 2022 Page 26 of 94

4.4 Integration Time Control

4.4.1 Set Integration Time (SET_INTEGRATION_TIME)

Sets the integration time which will be used in subsequent acquisitions. In all currently
supported spectrometers, the unit is in milliseconds; check FPGA compilation options
(READ_COMPILATION_OPTIONS) to confirm integration time resolution. On most
spectrometers, the default integration time will be zero to indiciate the shortest-possible
acquisition supported by the detector.

Spectrometers can specify a desired startup integration time using the
“STARTUP_INTEGRATION_TIME” field in the EEPROM (see ENG-0034); however, this field is not
automatically read or applied by firmware, and the value must be explicitly set by software to
override the hardware default.

Regardless of unit, the integration time is passed as a 24-bit value, meaning it is split across the
wValue and wIndex USB control fields.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xB2 Request

2 wValue 2 Integration Time LSW Least-significant 16 bits of
value

4 wIndex 2 Integration Time
MSW

Most-signifiant 8 bits of value

6 wLength 2 0 Payload size

Integration time can be expressed as:

Integration Time = wValue [0] + wValue [1]<<8 + wIndex [0]<<16

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

ENG-0001 Rev 1.15 Integration Time Control

Mar 18, 2022 Page 27 of 94

4.4.2 Get Integration Time (GET_INTEGRATION_TIME)

The command reads the integration time. The return value is generally in milliseconds; see
OPT_INTEGRATION_TIME_RESOLUTION to confirm units for your spectrometer.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xBF Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size
Integration time (ms) = data[0] + data[1]<<8 + data[0]<<16

Response

The integration time shows up as 6 bytes on endpoint 0, but only the first 3 bytes are used (LSB
first); you may ignore the last 3 bytes.

4.4.3 Get Actual Integration Time (GET_ACTUAL_INTEGRATION_TIME)

The command reads the actual integration time. The actual integration time is returned in
microseconds (µs), unlike commanded integration time (typically ms), and irrespective of the
compiled integration time resolution.

Actual integration time differs from the commanded integration time under two conditions:

1. In standard USB-based acquisition, the actual integration time will add the clock-out
(readout) time.

2. Under conditions of external triggering, the integration window will be extended to
include the output laser pulse time, thus extending the commanded integration time.

Stated differently, this is the time required to read the detector pixel values into the FPGA and
reset the sensor such that it could theoretically start the next integration, if Wasatch
spectrometers had a free-running mode.

Use the READ_COMPILATION_OPTIONS command to determine if this function is available.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xDF Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Integration Time Control

Mar 18, 2022 Page 28 of 94

Actual Integration Time (µs) = data[0] + data[1]<<8 + data[2]<<16

Response

The integration time shows up as six bytes on endpoint 0 but only the first three bytes are used
(LSB first). Returns 0xFFFFFF if command failed.

4.4.4 Get Actual Integration Time Available (GET_OPT_ACTUAL_INTEGRATION_TIME)

Returns whether the FPGA was compiled with options to support actual integration time.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x0B Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte (0 = Not available, 1 = Available)

4.4.5 Get Integration Time Resolution (GET_OPT_INTEGRATION_TIME_RESOLUTION)

Gets the integration time resolution from the FPGA compilation options register.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command

2 wValue 2 0x05 Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte:

• 0: 1 ms

• 1: 10 ms

• 2: Switchable between 1 ms and 10 ms

ENG-0001 Rev 1.15 Detector Gain and Offset Control

Mar 18, 2022 Page 29 of 94

4.5 Detector Gain and Offset Control

4.5.1 Set Detector Offset (SET_DETECTOR_OFFSET)

Sets the offset added to the detector pixel values. Defaults to 0 on reset.

The desired detector offset value can be configured in the STARTUP_OFFSET_EVEN and
STARTUP_OFFSET_ODD EEPROM fields (see ENG-0034); however, those values are not read or
applied automatically by firmware, and must be explicitly set by software to override hardware
defaults.

On Hamamatsu and IMX sensors, the offset is a SIGNED int16 and ADDED to each vertically
binned pixel’s intensity.

On InGaAs models, this command only applies to the even-numbered pixels (0, 2, 4…).

In Area Scan mode, offset is not added to the individual spectra output from the 2D detector;
instead, the configured “offset” value is instead used to indicate an integral delay in
milliseconds between output lines.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xB6 Request

2 wValue 2 Offset
(15:0)

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.5.2 Set Detector Offset Odd (SET_DETECTOR_OFFSET_ODD)

Sets the detector offset for odd-numbered pixels (1, 3, 5…). See SET_DETECTOR_OFFSET for
details.

This command is only available on InGaAs models.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0x9c Request

2 wValue 2 Offset (15:0) Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Detector Gain and Offset Control

Mar 18, 2022 Page 30 of 94

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.5.3 Set Detector Gain (SET_DETECTOR_GAIN)

Sets the gain by which detector pixel values (intensity) are increased (scaled UP). The gain
value has a different unit on Hamamatsu (CCD) vs IMX (CMOS) sensors, but the unitless
fractional value itself has the same format and is passed the same way over USB.

The intended startup gain value can be stored in the EEPROM via the DETECTOR_GAIN_EVEN
and DETECTOR_GAIN_ODD EEPROM fields (see ENG-0034); however, those fields are not read
or applied automatically by firmware, and must be explicitly set by software to override
hardware defaults.

Float16 format

Gain is always passed as an unsigned bfloat16 16-bit float. To marshall or demarshall a 16-bit
float, refer to the following bit table:

Bit 15: 128
Bit 14: 64
Bit 13: 32
Bit 12: 16

Bit 11: 8
Bit 10: 4
Bit 9: 2
Bit 8: 1

Bit 7: 1/2
Bit 6: 1/4
Bit 5: 1/8
Bit 4: 1/16

Bit 3: 1/32
Bit 2: 1/64
Bit 1: 1/128
Bit 0: 1/256

Therefore, the value 0x1234 would be parsed as follows:

MSB 0x12 = decimal 18
LSB 0x34 = b0011 0100 = 1/8 + 1/16 + 1/64 = 13/64 = decimal 0.203125
 7654 3210 (bit position)

Value = 18.203125

Hamamatsu CCD Notes

On Hamamatsu detectors, the gain value is a simple scalar factor which is multiplied against the
raw vertically-binned pixel values to scale them up in a linear fashion. If gain was 1.9, then
every pixel in the spectrum would be multiplied by 1.9, so a raw value of 1234 would become
2344 after truncation. Gain is multiplied into raw spectra before offset is added.

On older spectrometers, gain defaults to 1.9 on reset (FW hardcode); newer models default to
1.0.

Values less than 1.0 can be used to scale-down spectra, but this is not recommended as it
would reduce the effective dynamic range of the sensor and ADC, essentially losing
information.

On InGaAs models, this command only applies to even-numbered pixels (0, 2, 4…). See
SET_DETECTOR_GAIN_ODD for odd-numbered pixels.

ENG-0001 Rev 1.15 Detector Gain and Offset Control

Mar 18, 2022 Page 31 of 94

Sony IMX Implementation

On IMX sensors, gain is treated as a fractional value in decibels (dB), with a supported precision
of 0.1dB. The supported range of gain in dB varies by sensor, but for the Sony IMX385 the
sensor’s ADCs support an analog gain from 0.0 – 30.0dB; values of up to 72.0dB are accepted,
but the provided gain above 30.0dB will be digitally scaled by the sensor electronics.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xB7 Request

2 wValue 2 Gain (15:0, see above) Value

4 wIndex 2 0xXXXX Index (n/a)
6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.5.4 Set Detector Gain Odd (SET_DETECTOR_GAIN_ODD)

Same as SET_DETECTOR_GAIN, but applies only to odd-numbered pixels (1, 3, 5…).

This command is only available on InGaAs models.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0x9d Request

2 wValue 2 Gain Value
4 wIndex 2 0xXXXX Index (n/a)

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

ENG-0001 Rev 1.15 Detector Gain and Offset Control

Mar 18, 2022 Page 32 of 94

4.5.5 Get Detector Offset (GET_DETECTOR_OFFSET)

Reads the signed offset added to the vertically-binned detector pixel values.

On InGaAs models, this command only applies to even-numbered pixels (0, 2, 4…).

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xC4 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns detector offset (two bytes) on endpoint 0 if command was successful. ARM-based
products returns value < 0 if unsuccessful. FX2-based products return 1 if successful and 0 if
unsuccessful.

4.5.6 Get Detector Offset Odd (GET_DETECTOR_OFFSET_ODD)

Same as GET_DETECTOR_OFFSET, but only applies to odd-numbered pixels (1, 3, 5…).

This command is only available on InGaAs models.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0x9e Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns detector offset (two bytes) on endpoint 0 if command was successful. ARM-based
products returns value < 0 if unsuccessful. FX2-based products return 1 if successful and 0 if
unsuccessful.

4.5.7 Get Detector Gain (GET_DETECTOR_GAIN)

Reads the detector gain, as an unsigned bfloat16 (see Set Detector Gain
(SET_DETECTOR_GAIN)).

ENG-0001 Rev 1.15 Detector Gain and Offset Control

Mar 18, 2022 Page 33 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xC5 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Returns detector gain (two bytes) on endpoint 0 if command was successful. Returns value < 0
if unsuccessful.

4.5.8 Get Detector Gain Odd (GET_DETECTOR_GAIN_ODD)

Reads the detector gain for odd-numbered pixels, as an unsigned bfloat16 (seeSet Detector
Gain Odd (SET_DETECTOR_GAIN_ODD)).

This command is only available on InGaAs models.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0x9f Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns detector gain (two bytes) on endpoint 0 if command was successful. Returns value < 0
if unsuccessful.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 34 of 94

4.6 Laser Control

This section describes commands controlling the laser_enable setting that determines whether
the laser is firing or not, as well as other laser-related features such as laser temperature.

Note that the following section on Modulation Control is also highly relevant to laser control, as
pulse-width modulation (PWM) is used to control the average output laser power of Raman
systems (see Modulation Control).

4.6.1 Laser Interlock Overview

Wasatch Photonics spectrometers with integrated multi-mode lasers (MML) include a laser
interlock board to support FDA laser-safety requirements. Laser interlock features include a
removable two-position key-switch and an optional “continuity interlock circuit” which may be
integrated into external laser-safety systems (such as laboratory door “crash-bar” circuits).

MML-equipped systems also include two laser status LEDs to communicate laser status to the
user: a yellow “Laser Armed” LED, and a red “Laser Firing” LED.

The laser is considered “armed” (literally, is powered) if and only if:

• the key-switch is inserted and turned to the upright “firing” position; AND

• the continuity circuit is closed, typically via the included microphone jack dongle; AND

• the spectrometer is plugged into 12VDC power; AND

• the spectrometer is switched “on” (for units with a power switch).

If the laser is armed, the yellow status LED will flash at a 1Hz rate (50% duty cycle).

In addition, if the spectrometer has been commanded to fire the laser, the red status LED will
flash at the same 1Hz rate (50% duty cycle). Note that there is an in-built delay between the
spectrometer accepting the command to fire the laser, and when the laser actually begins
emitting a beam. The red status LED will begin flashing as soon as the “laser_enable” command
is received (if the laser was already properly armed), not when the laser actually begins firing.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 35 of 94

4.6.2 Set Laser Enable (SET_LASER_ENABLE)

On Raman spectrometers, the command enables or disables the internal laser; or when dealing
with an external trigger, controls the external trigger signal. On reset the laser is disabled, so
external trigger signaling must be preceded by enabling this line.

On Gen 1.5 non-Raman spectrometers, this opcode is also used for SET_STROBE_ENABLE.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xBE Request

2 wValue 2 0 = disable
1 = enable

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.6.3 Get Laser Enable (GET_LASER_ENABLE)

On Raman spectrometers, the command returns status indicating the laser is enabled or
disabled. Note that when laser modulation is enabled, the laser is considered to be “firing”
continuously when the laser is enabled, even though technically it may be “pulsing” at some
frequency to achieve lower power levels.

Also note that some lasers include a deliberate delay between when firing has been requested,
and when the laser actually begins emitting. This delay is provided for operator safety reasons,
giving the user time to observe and react to the external warning LED before the laser actually
emits hazardous radiation.

Furthermore, even if a laser has been commanded to fire, it will not do so if the laser safety
interlock has been engaged, for instance by removing the key or switching it to the “safe”
position, or by leaving the continuity interlock safety circuit open (removing the audiojack
dongle).

In all such cases, the “laser enable” status returned by this command indicates whether the
laser has been commanded to fire by software, not whether the laser is actually physically firing;
for that, see Get Laser Is Firing (GET_LASER_IS_FIRING).

On Gen 1.5 non-Raman spectrometers, this opcode is also used for GET_STROBE_ENABLE.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 36 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xE2 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Returns 0 (laser disabled) or 1 (laser enabled) in one byte on endpoint 0.

4.6.4 Get Laser Temperature (GET_LASER_TEMPERATURE, aka GET_ADC)

In normal operation, reads the Analog-to-Digital Converter (ADC) wired to the thermistor
mounted to the laser cavity housing. However, technically the command can be used to read
other ADCs in the system, which is why it is also known as GET_ADC. See the SELECT_ADC
command for information about how to point the GET_ADC command to other targets besides
the internal laser thermistor.

The returned value is a “raw” (unitless) 12-bit ADC response scaled to the thermistor voltage,
and can be converted to °C using the following equation. Note that all Wasatch Photonics
lasers are monitored with the same model thermistor (TDK B57862S0103F040), hence the
coefficients do not need to be calibrated per-model or per-unit.

// curve-fit per the datasheet
// @see https://media.digikey.com/pdf/Data%20Sheets/Epcos%20PDFs/B57862.pdf
voltage = 2.5 * raw / 4096
resistance = 21450 * voltage / (2.5 - voltage)
if resistance > 0:
 logVal = math.log(resistance / 10000)
 insideMain = logVal + 3977 / (25 + 273)
 degC = 3977 / insideMain – 273

You will note there is no “SET_LASER_TEMPERATURE” command. That is deliberate. The laser
TEC setpoint is optimized in-factory to minimize mode-hopping and maximize performance and
stability. Attempting to manually change the laser temperature is not recommended.

This command relates to Raman spectrometers with an IPS single-mode laser (SML); the
laser driver board currently used with Ondax multi-mode lasers (MML) does not support
temperature readout.

https://www.digikey.com/product-detail/en/epcos-tdk/B57862S0103F040/495-2166-ND/739896
https://media.digikey.com/pdf/Data%20Sheets/Epcos%20PDFs/B57862.pdf

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 37 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xD5 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Two bytes of temperature reading (12-bit value with the top four bits zeroed out) on endpoint
0. Note this value is little-endian, unlike the similar GET_DETECTOR_TEMPERATURE.

4.6.5 Set Laser TEC Setpoint (SET_LASER_TEC_SETPOINT)

Sets the setpoint in the laser’s Thermo-Electric Cooler (TEC) used to maintain a constant laser
temperature.

Note that this is a unitless measure, and is not °C. No coefficients are provided to convert this
value to an actual temperature. Engineering documentation suggests this value should not be
set outside the 7-bit range (0, 127) inclusive.

This value is used exclusively during manufacturing calibration to balance a hardware
potentiometer (locked after calibration), and is not recommended for end-user
manipulation. The supported temperature maintained in the laser is prescribed by the laser
manufacturer and is not tunable or adjustable by customers.

Essentially, this command allows manufacturing technicians to nudge the laser temperature up
and down slightly, or cycle it over a range, while tuning a board-level potentiometer to a stable
point well away from temperatures associated with “mode-hops” in single-mode lasers.

On reset the laser TEC setpoint is 63, the midpoint of the runtime-configurable range.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xE7 Request
2 wValue 2 Set Point (15:0) Value (63-127)

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 38 of 94

4.6.6 Get Laser TEC Setpoint (GET_LASER_TEC_SETPOINT)

The command reads the laser temperature set point. See “SET_LASER_TEC_SETPOINT” for
warnings about this value.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xE8 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload

Response

The laser temperature set point shows up as 6 bytes on endpoint 0 but only the first byte is
used (and only the first 7 bits of that).

4.6.7 Get Laser Type Available (GET_OPT_LASER_TYPE)

Gets the type of laser from the FPGA compilation options register.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xFF Second tier command

2 wValue 2 0x08 Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte:

• 0 = No laser

• 1 = Internal laser

• 2 = External laser

4.6.8 Get Laser Interlock (GET_LASER_INTERLOCK)

The command returns the status of the laser interlock as specified in Laser Interlock Overview.

This command is developmental and not yet widely deployed.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 39 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xEF Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Response is 0 (interlock circuit open, laser cannot fire) or 1 (interlock circuit open, laser armed
and ready to fire) on endpoint 0.

4.6.9 Get Laser Is Firing (GET_LASER_IS_FIRING)

This command returns whether or not the laser is currently firing.

This is subtly distinct from the Get Laser Enable (GET_LASER_ENABLE) command, which
indicates whether the spectrometer has been “requested” to fire the laser (or alternatively,
whether the spectrometer is “trying” to fire the laser). This is also distinct from the Get Laser
Interlock (GET_LASER_INTERLOCK) command, which returns whether the spectrometer is able
to fire the laser. This is even somewhat different from the visual status indicated by the red
“Laser Firing” status LED described in Laser Interlock Overview, as that LED includes a short
FDA-recommended padding in which the LED begins flashing before the laser actually starts
emitting energy; this command has no such padding and returns the physical instantaneous
state of emission.

Unlike any of the above similar-and-related commands, this command quite simply returns
whether the integrated laser, to the best of the electronics’ current knowledge, actively is
firing. Conceptually, this command should return a similar status to what you could measure by
coupling an optical power meter to the laser and detecting the physical emission directly.

This command should not be affected by PWM duty-cycle, so long as the configured pulse
width is non-zero and pulse period no more than 1ms.

This command is developmental and not yet widely deployed.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xff 2nd-Tier Command

2 wValue 2 0x0d Request
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Response is 0 (laser is not currently firing) or 1 (laser is actively firing) on endpoint 0.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 40 of 94

4.6.10 Set Laser Power Ramping (SET_LASER_RAMPING_MODE)

The command enables or disables ramping of the laser power when the laser is being turned on
or off. When ramping the laser, the configured Modulation Period is used as the period of each
successive step in the laser ramp.

The generated laser output power ramp is linear, and will steadily increment or decrement the
applied laser modulation pulse width from the “start state” (whether the laser started “off” or
“on”), to the “end state” (opposite of the start state).

By way of example, suppose that MOD_PULSE_PERIOD is set to 100 (typical),
MOD_PULSE_PERIOD (n) is set to 5 (~5% laser power), LASER_RAMPING_MODE is enabled, and
LASER_ENABLE is changed from 0 (disabled) to 1 (enabled). The laser will gradually “ramp up”
and later “ramp down” over a period of 400µs ((n – 1)(MOD_PULSE_PERIOD)) in each direction:

• (laser is off)

• User sets LASER_ENABLE → 1

• Pass 1: for 100µs (MOD_PULSE _PERIOD), laser is on 1µs and off 99µs

• Pass 2: for 100µs (MOD_PULSE _PERIOD), laser is on 2µs and off 98µs

• Pass 3: for 100µs (MOD_PULSE _PERIOD), laser is on 3µs and off 97µs

• Pass 4: for 100µs (MOD_PULSE _PERIOD), laser is on 4µs and off 96µs

• (laser is now firing continuously at 5% power)

• User sets LASER_ENABLE → 0

• Pass 1: for 100µs (MOD_PULSE _PERIOD), laser is on 4µs and off 96µs

• Pass 2: for 100µs (MOD_PULSE _PERIOD), laser is on 3µs and off 97µs

• Pass 3: for 100µs (MOD_PULSE _PERIOD), laser is on 2µs and off 98µs

• Pass 4: for 100µs (MOD_PULSE_PERIOD), laser is on 1µs and off 99µs

• (laser is now off)

On reset laser ramping is disabled. Not available in FX2.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xE9 Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Returns 0 if command was successful. Returns value < 0 if unsuccessful.

4.6.11 Get Laser Power Ramping Mode (GET_LASER_RAMPING_MODE)

The command reads the state of the Laser Power Ramping mode. Not available in FX2.

ENG-0001 Rev 1.15 Laser Control

Mar 18, 2022 Page 41 of 94

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xEA Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Response is 0 (laser power ramping disabled) or 1 (laser power ramping enabled) on endpoint
0.

4.6.12 Get Laser Control Type Available (GET_OPT_LASER_CONTROL)

Gets the type of laser control from the FPGA compilation options register.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x09 Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

One byte:

• 0 = Laser modulation

• 1 = Laser transition points

• 2 = Laser ramping

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 42 of 94

4.7 Modulation Control

Modulation commands have different effects on Raman vs non-Raman systems.

Raman Spectrometers

On Raman systems, modulation commands control the average output laser power. They do
this by configuring a “duty cycle” in the laser, in which the laser is rapidly turned on and off.
The laser is technically a CW (Continuous Wave) laser, and its instantaneous output power is
always either “full power” or “off” (other than ramp-up fluctuations). However, by manually
pulsing the laser via PWM (Pulse-Width Modulation), we can approximate lower “average”
power levels, which can roughly be considered a “percentage” of full power.

We say “roughly” a percentage because when you first turn a laser on, there is a brief period of
instability in output power. When you are turning a laser on and off rapidly, that initial
instability is amplified because it is the “unstable” initial period which is now being repeatedly
pulsed at a duty cycle.

The duty cycle is expressed programmatically as a PULSE_PERIOD and PULSE_WIDTH, both in
microseconds. The laser will fire for the first PULSE_WIDTH microseconds of every
PULSE_PERIOD, and be switched off for the remainder of the PULSE_PERIOD. That is, if the
PULSE_PERIOD is 100µs, and the PULSE_WIDTH is 20µs, then the laser will fire for 20µs and
then switch off for 80µs, repeating the pattern every 100µs, for a 20% duty cycle which should
provide “approximately” 20% of the laser’s full power.

Non-Raman Gen 1.5 Spectrometers

On Non-Raman spectrometers with Gen 1.5 electronics, the same PULSE_PERIOD and
PULSE_WIDTH described above are used to control the “continuous strobe” pin on the external
accessory connector.

Uint40 Parameters

All modulation values are expressed in 40-bit unsigned integers. As the combined storage of
the standard USB Control Packet’s wValue and wIndex fields only provide 32 bits of storage,
one byte of payload space is used as well.

40-bit integers in all commands are sent from the host to the device as follows:

• The least-significant word (LSW, bits 0..15) is sent as the wValue

• The next-most significant word (MSW, bits 16-31) are sent as the wIndex

• The most-significant byte (MSB, bits 32-39) are sent as the first byte of the payload

It is recommended that a full 8 bytes be provided as payload, but only the first byte is used.

When Uint40 values are returned by “getter” commands, they are sent as 5-byte little-endian
sequences.

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 43 of 94

4.7.1 Set Modulation Pulse Period (SET_MOD_PULSE_PERIOD)

This command sets the modulation period in microseconds. Typical values used are 100µs or
1000µs.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xc7 Request

2 wValue 2 LSW Bits 0..15 of 40-bit value
4 wIndex 2 MSW Bits 16..31 of 40-bit value

6 wLength 8 MSB + extra Payload byte 0 contains bits 32..39
of 40-bit value (remaining 7 bytes
are ignored)

4.7.2 Get Modulation Pulse Period (GET_MOD_PULSE_PERIOD)

This command gets the currently configured modulation pulse period in microseconds.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xcb Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Uint40 value in 5 little-endian bytes.

Example: [0xaa 0xbb 0xcc 0xdd 0xee] = 0xeeddccbbaa = 1025923398570µs, or about 12 days

4.7.3 Set Modulation Pulse Width (SET_MOD_PULSE_WIDTH)

This command sets the modulation width in microseconds. If the modulation period is 1000µs,
a pulse width of 333µs would represent a 33% duty cycle, or roughly 33% of the laser’s full
power.

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 44 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xdb Request

2 wValue 2 LSW Bits 0..15 of 40-bit value

4 wIndex 2 MSW Bits 16..31 of 40-bit value
6 wLength 8 MSB + extra Payload byte 0 contains bits 32..39

of 40-bit value (remaining 7 bytes
are ignored)

4.7.4 Get Modulation Pulse Width (GET_MOD_PULSE_WIDTH)

This command gets the currently configured modulation pulse width in microseconds.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xdc Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Uint40 value in 5 little-endian bytes.

Example: [0xaa 0xbb 0xcc 0xdd 0xee] = 0xeeddccbbaa = 1025923398570µs, or about 12 days

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 45 of 94

4.7.5 Set Modulation Enable (SET_MOD_ENABLE)

Raman Spectrometers

The command enables or disables laser modulation, the standard way to control laser output
power as a percentage of full power (unmodulated output). On reset laser modulation is
disabled.

Non-Raman Gen 1.5

On Non-Raman spectrometers this command is used to dis/enable continuous strobe on the
external accessory connector. If cont_strobe is disabled, the cont_strobe output pin on the
accessory connector will remain “logic low”. If cont_strobe is enabled, the pin will output a
square wave pattern with the duty cycle specified by MOD_PULSE_PERIOD and
MOD_PULSE_WIDTH.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xBD Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Index (n/a)
6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.7.6 Get Modulation Enable (GET_MOD_ENABLE)

Raman Spectrometers

The command returns status indicating laser modulation is enabled or disabled. Laser
modulation is used to “pulse” the laser at a high frequency (typically 100Hz or 1Khz), such that
the duty cycle (the fraction of each pulse period in which the laser is actually firing) can be
scaled to yield variable output power levels. By definition, the laser’s “full power” is achieved
with laser modulation disabled, such that the beam is continuous and without interruption.

Non-Raman Gen 1.5

On Non-Raman Gen 1.5 spectrometers, this command returns whether continuous strobe is
enabled.

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 46 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xE3 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Returns 0 (no modulation / full power) or 1 (laser modulation enabled) in one byte on endpoint
0. Returns value < 0 if unsuccessful.

4.7.7 Set Modulation Pulse Delay (SET_MOD_PULSE_DELAY)

Raman Spectrometers

When laser modulation is enabled, and when laser modulation is “linked” to integration, this
command selects the delay from the start of integration to the beginning of laser emitting (in
µs).

Non-Raman Gen 1.5

On non-Raman Gen 1.5 spectrometers, this command affects the continuous strobe feature on
the external accessory connector in the same manner described above.

If cont_strobe is enabled, and if MOD_LINKED_TO_INTEGRATION is enabled, then this delay will
be inserted between the beginning of an integration (which will start when commanded, or
after “trigger_delay” has elapsed following an external hardware trigger), and when the first
strobe in a continuous series is set to begin. Subsequent continuous pulses will not be so
delayed, until the integration ends (at which point the “linked” pulses will summarily cease,
until the next integration begins).

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xC6 Request
2 wValue 2 Delay (15:0) Delay LSW

4 wIndex 2 Delay (31:16) Delay bits 16-31
6 wLength 2 1 Payload length

8 Data 1 Delay (39:32) Delay MSB (mandatory, even if 0)
Delay (μs) = wValue[0] + wValue[1]<<8 + wIndex[0]<<16 + wIndex[1]<<24 + data[0]<<32

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 47 of 94

4.7.8 Get Modulation Delay (GET_MOD_PULSE_DELAY)

The command reads the modulation delay (µs). See SET_MOD_DELAY for details.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xCA Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Delay (µs) = data[0] + data[1]<<8 + data[2]<<16 + data[3]<<24 + data[4]<<32

Response

Response shows up as five bytes on endpoint 0 (LSB first).

4.7.9 Set Modulation Duration (SET_ MOD_DURATION)

When modulating the laser, this command selects the time the laser is being modulated during
the integration time (in µs).

This command is deprecated and not actively tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xB9 Request

2 wValue 2 Duration (15:0) Duration LSW
4 wIndex 2 Duration (31:16) Duration bits 16-31

6 wLength 2 1 Payload size

8 Data 1 Duration (39:32) Duration MSB (mandatory, even if
0)

So Laser Modulation Duration can be expressed as:

Duration (μs) = wValue[0] + wValue[1]<<8 + wIndex[0]<<16 + wIndex[1]<<24 + data[0]<<32

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.7.10 Get Modulation Duration (GET_ MOD_DURATION)

The command reads the laser modulation duration in µs, as previously set by the user. Defaults
to 0.

This command is deprecated and not actively tested.

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 48 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xC3 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Duration (µs) = data[0] + data[1]<<8 + data[2]<<16 + data[3]<<24 + data[4]<<32

Response

The laser modulation time is returned as five bytes on endpoint 0 (LSB first) in µs.

4.7.11 Set Modulation Linked to Integration (SET_MOD_LINKED_TO_INTEGRATION)

Raman Spectrometers

The command links the state of whether a modulated laser is actively emitting or not (when
permitted by other related settings) to the integration time.

When this linkage is enabled AND laser modulation is enabled, the laser emits only while
integrations are taking place, and the laser stops emitting when integration is complete.

When the link is disabled AND laser modulation is enabled, the laser modulates continuously,
regardless of whether the detector is acquiring or not.

Regardless of linkage setting, if MOD_ENABLE is disabled, the laser will not be modulated.
Likewise, if LASER_ENABLE is disabled, the laser will not fire (and therefore will not be
modulated).

Non-Raman Gen 1.5

On Non-Raman systems, this setting determines whether continuous strobe is “linked” to
integrations or not.

If the link is DISABLED, then the continuous strobe will continue to modulate according to its
defined pulse period and pulse width regardless of integration operations. The generated
output modulation will represent an unchanging wall-clock, unaffected by whatever else the
spectrometer or detector are doing at the time.

If the link is ENABLED, then continuous strobe will NOT PULSE (will remain “logic-low”) when
the detector is not integrating, and will RE-INITIALIZE (repeat its initial “delay” as per SET_
MOD_DELAY) each time a new integration begins. This allows every acquisition to have a
deterministic number of pulses during every measurement with the same integration time, and
for the “location” of those pulses (timing offset from the start of the acquisition) to be
deterministic and repeatable.

This command is developmental and being redefined.

ENG-0001 Rev 1.15 Modulation Control

Mar 18, 2022 Page 49 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xDD Request

2 wValue 2 0 = don’t link modulation to
integration
1 = link modulation to integration

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.7.12 Get Modulation Linked to Integration Time (GET_MOD_LINKED_TO_INTEGRATION)

The command reads whether the laser modulation is linked to an active integration.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xDE Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Response is 0 (modulation not linked to integration) or 1 (modulation linked to integration) on
endpoint 0. Returns value < 0 if unsuccessful.

ENG-0001 Rev 1.15 Accessory Connector Control

Mar 18, 2022 Page 50 of 94

4.8 Accessory Connector Control

These commands enable and disable the entire accessory connector, meaning they make
individual accessory commands like LAMP_ENABLE, CONT_STROBE_ENABLE, TRIGGER_SOURCE
etc possible.

4.8.1 Set Accessory Enable (SET_ACCESSORY_ENABLE)

This command enables or disables the bank of FPGA switches supporting the LAMP, STROBE
and TRIGGER pins on the Gen 1.5 accessory connector.

This command only operates on a Non-Raman spectrometer with Gen 1.5 electronics.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0x38 Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

4.8.2 Get Accessory Enable (GET_ACCESSORY_ENABLE)

This command returns the enable status of the bank of FPGA switches supporting the LAMP,
STROBE and TRIGGER pins on the Gen 1.5 accessory connector.

This command only operates on a Non-Raman spectrometer with Gen 1.5 electronics.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0x39 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte (0 accessory pins disabled, non-zero accessory pins enabled)

ENG-0001 Rev 1.15 Lamp Control

Mar 18, 2022 Page 51 of 94

4.9 Lamp Control

Given the inherent safety issues in laser operation, it was decided not to re-use the existing
“laser_enable” command to control external lamps for non-Raman Gen 1.5 spectrometers.

4.9.1 Set Lamp Enable (SET_LAMP_ENABLE)

This command will set the lamp_enable output pin on the Gen 1.5 accessory connector.

This command has no connection to other Gen 1.5 accessory connector outputs such as
continuous strobe. Lamp_enable and cont_strobe_enable are orthogonal, and may be both
enabled at the same time, or neither, or one may be enabled but not the other; they do not
intercommunicate.

This command only operates on a Non-Raman spectrometer with Gen 1.5 electronics.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0x33 Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful. Returns value < 0 if unsuccessful.

4.9.2 Get Lamp Enable (GET_LAMP_ENABLE)

This command will return the current value of the lamp_enable pin on the Gen 1.5 accessory
connector.

This command only operates on a Non-Raman spectrometer with Gen 1.5 electronics.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0x32 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Lamp Control

Mar 18, 2022 Page 52 of 94

Response

One byte (0 lamp disabled, non-zero lamp enabled)

4.9.3 Set Strobe Enable (SET_STROBE_ENABLE)

On non-Raman spectrometers, this command enables or disables the strobe function on the
external accessory connector.

On Raman spectrometers, this same opcode is used as SET_LASER_ENABLE.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xbe Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

4.9.4 Get Strobe Enable (GET_STROBE_ENABLE)

On Gen 1.5 non-Raman spectrometers, this command returns the current enable status of the
continuous strobe pin on the external accessory connector.

On Raman spectrometers, this same opcode is used for GET_LASER_ENABLE.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xe2 Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

One byte (0 strobe disabled, non-zero strobe enabled)

ENG-0001 Rev 1.15 Detector Temperature Control

Mar 18, 2022 Page 53 of 94

4.10 Detector Temperature Control

4.10.1 Set Detector Thermo-Electric Cooler Enable (SET_DETECTOR_TEC_ENABLE)

The command enables or disables the Thermo-Electric Cooler (TEC) on the detector. When
enabled the TEC chip on the TEC Board will attempt to maintain the detector at the defined
setpoint. On reset, the TEC is disabled.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xD6 Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.10.2 Get Detector TEC Enable (GET_DETECTOR_TEC_ENABLE)

The command reads whether the Thermo-Electric Cooler (TEC) controlling the detector
temperature is enabled and running.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xDA Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Response is 0 (detector TEC disabled) or 1 (detector TEC enabled) on endpoint 0.

4.10.3 Get Detector Temperature (GET_DETECTOR_TEMPERATURE)

Gets a reading scaled to the voltage of the thermistor mounted next to the detector.

Note that while this command reads an ADC, similar to the GET_LASER_TEMPERATURE
command, it is hard-coded to read a specific ADC. While the GET_LASER_TEMPERATURE
command is in effect reading an arbitrary and selectable ADC (which simply happens to default
to the laser thermistor), the GET_DETECTOR_TEMPERATURE command is locked to the detector
thermistor and cannot be changed.

ENG-0001 Rev 1.15 Detector Temperature Control

Mar 18, 2022 Page 54 of 94

The response is a “raw” (unitless) ADC reading. To convert to °C, use the 3rd-order “ADC to
DegC” polynomial coefficients in your spectrometer’s EEPROM (see ENG-0034). The resulting
equation would be:

Temperature °C = C0 + C1(raw) + C2(raw²)

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xD7 Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Two bytes of temperature reading (12-bit value with the top four bits zeroed out) on endpoint
0. Note this value is big-endian, unlike GET_LASER_TEMPERATURE.

4.10.4 Set Detector TEC Setpoint / Set DAC (SET_DETECTOR_TEC_SETPOINT)

This command has two modes.

In the general case, it writes a 12-bit value (0-4095) to a Digital-to-Analog Converter (DAC),
which scales the value to generate an output voltage of 0-5VDC. In normal operation, this
command is used to specify the setpoint around which the Thermo-Electric Cooler (TEC)
attempts to stabilize the temperature of the detector.

However, some spectrometers have more than one DAC, and this command can be used to set
any of them. In particular, some spectrometers control an external laser (NOT the “internal”
laser used with Wasatch -L Raman systems), in which this command can also be used to control
a secondary DAC that determines the output power of that external laser.

The target DAC is specified using the wIndex parameter. The DAC parameter is always a 12-bit
value, and the upper four bits are unused and may be left zero.

Note that when commanding the TEC setpoint, the unit of the value set represents
approximately 1/4096 (0.0002) of one volt — this is not set directly in °C. To convert from the
intended setpoint in °C to the equivalent DAC value, use the “degCtoDAC” coefficients in the
spectrometer’s EEPROM (see ENG-0034).

Given the goal temperature T in °C, and the 3 coefficients C0 through C2, the resulting equation
would be evaluated like this:

Uint16 raw_dac_value = round(C0 + C1T + C2T2)

ENG-0001 Rev 1.15 Detector Temperature Control

Mar 18, 2022 Page 55 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xD8 Request

2 wValue 2 0xXnnn 12-bit setpoint value
(most-significant nibble
ignored)

4 wIndex 2 0 = detector TEC setpoint
1 = secondary DAC (e.g.
external laser power, etc)

Index

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.10.5 Get Detector TEC Setpoint / Get DAC (GET_DETECTOR_TEC_SETPOINT, aka GET_DAC)

Reads one of the two DAC settings as a 12-bit value (0 to 4095) corresponding to a voltage
between 0V and ~5V. If the index value is 0, the value read is from the detector TEC setpoint
DAC; if the index value is 1, the value read is from the secondary DAC (which may be configured
to control the power of an external laser or other peripherals depending on your system
configuration).

As with SET_DETECTOR_TEC_SETPOINT above, the returned value will not be in °C, and should
simply return the most-recently set DAC value that you assigned.

Note that the TEC is essentially a write-only component (via setpoint), and the thermistor is a
read-only component. To measure the actual detector temperature, please see
GET_DETECTOR_TEMPERATURE to read the detector thermistor and convert back to °C.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xD9 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0 = detector TEC setpoint

1 = secondary DAC
Index

6 wLength 2 0 Payload size

Response

Two bytes of DAC reading (12-bit value with the top four bits zeroed out) on endpoint 0 (LSB
first).

ENG-0001 Rev 1.15 Detector Temperature Control

Mar 18, 2022 Page 56 of 94

4.10.6 Select ADC (SET_SELECTED_ADC)

The command selects the active Analog-to-Digital Converter (ADC) for the next “GET_ADC”
command. At reset, the selected ADC is the one coupled to the laser thermistor, which is why
the “GET_ADC” command is typically called “GET_LASER_TEMPERATURE”. However, many
spectrometers have a secondary ADC which can be coupled to different components in OEM
system designs (for instance, a second laser, or a photodiode).

When calling SELECT_ADC, 0 will reset to the default target (typically the internal laser
temperature thermistor), while a value of 1 will indicate the secondary ADC if one is present.

Note that after changing the ADC selector, it is recommended to perform a “throwaway read”
(a redundant call to GET_ADC) to fully synchronize the read cycle and ensure the next read
operation does not contain “mingled data” from both components.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xED Request

2 wValue 2 0 = primary ADC (laser
thermistor)
1 = secondary ADC (if present)

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.10.7 Get Selected ADC (GET_SELECTED_ADC)

The command returns the index of the selected ADC (see SET_SELECTED_ADC).

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xEE Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Response is 0 (primary ADC selected) or 1 (secondary ADC selected) on endpoint 0.

ENG-0001 Rev 1.15 Trigger Control

Mar 18, 2022 Page 57 of 94

4.11 Trigger Control

4.11.1 Set Trigger Source (SET_TRIGGER_SOURCE)

Sets trigger source for acquiring data. Defaults to 0 (USB software command trigger) on reset.

“Software triggering,” the default, simply means that the spectrometer will not expect to
generate and return a spectrum to the host until it receives an ACQUIRE command (0xad).

“Hardware triggering,” the only currently supported alternative, is to wait until a rising edge
signal arrives on the “EXTERNAL_HARDWARE_TRIGGER_IN” pin of the external accessory
connector. At that point, the spectrometer will generate and return a spectrum exactly as
though it had received an ACQUIRE command via USB, but with lower latency and timing jitter.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xD2 Request
2 wValue 2 0 = USB SW command

(default)
1 = external HW trigger

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.11.2 Get Trigger Source (GET_TRIGGER_SOURCE)

The command reads the trigger source for data acquisition.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xD3 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Trigger Control

Mar 18, 2022 Page 58 of 94

Response

Response is 1 byte on Endpoint 0. 0 indicates USB software command trigger, or 1 for external
HW trigger. Returns value < 0 if unsuccessful.

4.11.3 Set Trigger Delay (SET_TRIGGER_DELAY)

Sets the delay from the trigger to the start of integration time. Resolution of the trigger delay is
0.5 µs. On reset the trigger delay is set to 0.

Example: a configured trigger delay of 50 will cause each acquisition to begin 25µs after receipt
of the trigger.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xAA Request

2 wValue 2 Trigger Delay LSW Value (bits 0-15)
4 wIndex 2 Trigger Delay MSB Value (bits 16-23)

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful. Returns value < 0 if unsuccessful.

4.11.4 Get Trigger Delay (GET_TRIGGER_DELAY)

The command reads the trigger delay. Not available in FX2.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xAB Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Trigger Control

Mar 18, 2022 Page 59 of 94

Response

The trigger delay shows up as 6 bytes on endpoint 0 but only the first 3 bytes are used (LSB
first) – ignore response on last 3 bytes. Trigger delay (x .5 us) = B0 + B1 << 8 + B2 << 16.

4.11.5 Select Trigger Output (SET_TRIGGER_OUTPUT)

The command selects which signal (“laser firing” or “integration active”) the spectrometer will
output on the external trigger pin.

This command is deprecated, and not currently tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xE0 Request

2 wValue 2 0 = output laser modulation
status
1 = output integration status

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.11.6 Get Trigger Output (GET_TRIGGER_OUTPUT)

The command returns whether the output trigger pin is configured to output a “laser firing” or
“integration active” signal.

This command is deprecated, and not currently tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xE1 Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Response is 0 (laser modulation output) or 1 (integration active pulse) on endpoint 0.

ENG-0001 Rev 1.15 High-Gain Mode

Mar 18, 2022 Page 60 of 94

4.12 High-Gain Mode

InGaAs-based spectrometers (NIR1/2, WP-1064) support selectable analog gain modes on the
photodiode array. This is separate from the digital gain applied in the FPGA. Although InGaAs
detectors may support more than 2 selectable analog gain modes, only two (“low,” the
firmware default, and “high”) are implemented and selectable in Wasatch electronics.

In electrical documentation, this feature is referred to as “CF_SELECT,” the chip-level signal
used to enable the feature.

These commands are not available on CCD or CMOS detectors.

4.12.1 Set High-Gain Mode Enable (SET_HIGH_GAIN_MODE_ENABLE)

This command turns high-gain mode on or off.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xeb Request

2 wValue 2 0 = disable high gain mode
1 = enable high gain mode

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

4.12.2 Get High Gain Mode Enable (GET_HIGH_GAIN_MODE_ENABLE)

This command returns the current state of high-gain mode.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xec Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte:

• 0 = High gain mode disabled (default in firmware)

• 1 = High gain mode enabled

4.12.3 Get CF Select Available (GET_OPT_CF_SELECT)

Indicates whether the FPGA was compiled with a selectable “CF Select” (Clock Frequency)
switch. This option is currently only used on InGaAs detectors to toggle “High-Gain Mode” by
adjusting the voltage which determines the photonic conversion efficiency.

ENG-0001 Rev 1.15 High-Gain Mode

Mar 18, 2022 Page 61 of 94

It is expected that all spectrometers with an InGaAs detector (all models with PID 0x2000, and
any InGaAs-based ARM) will have this feature enabled.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x07 Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

One byte:

• 0 = CF Select not available

• 1 = CF Select available

ENG-0001 Rev 1.15 Battery Control

Mar 18, 2022 Page 62 of 94

4.13 Battery Control

4.13.1 Get Battery state (GET_BATTERY_STATE)

Gets the battery percentage from the gas gauge. This command is only supported on XS-Series
spectrometers with internal batteries.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x13 Command

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Three bytes:

• Byte 0: fractional battery charge level (divide by 256 to get value from 0.000 to 0.996
— this is not the complete charge percentage)

• Byte 1: integral battery charge level (valid values 0-100)

• Byte 2: charging state (0 if falling e.g. discharging, non-zero if rising e.g. charging)

For instance, the response array [0x12, 0x34, 0x01] would indicate the battery was at 52.07%
(0x34 + 0x12/256) and that the battery was currently charging.

4.13.2 Get battery register (GET_BATTERY_REG)

Gets any of the available registers in the gas gauge per the gas gauge datasheet
(https://datasheets.maximintegrated.com/en/ds/MAX17055.pdf). For instance, if you wanted
to read the battery’s Design Capacity, you would set wIndex to 0x0018.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command
2 wValue 2 0x14 Command

4 wIndex 2 register Register to be read (big-endian)

6 wLength 2 0 Payload size

Response

Two bytes (nterpretation depending on register).

https://datasheets.maximintegrated.com/en/ds/MAX17055.pdf

ENG-0001 Rev 1.15 Raman Mode and Laser Watchdog

Mar 18, 2022 Page 63 of 94

4.14 Raman Mode and Laser Watchdog

4.14.1 Set Raman Mode (SET_RAMAN_MODE)

This command is only available on XS-series spectrometers.

There are two modes provided for laser use:

• Manual Mode: Where the user manually turns the laser on and off. (Default at system boot)
• Raman Mode: Where the laser turns on before acquiring spectra and turns off after acquiring

spectra.

Note that enabling Raman Mode and taking an acquisition is not sufficient to fire the laser. You must
also explicitly enable the laser normally using SET_LASER_ENABLE. The normal command sequence is
therefore:

1. SET_RAMAN_MODE -> 1 (laser will not fire)
2. SET_LASER_ENABLE -> 1 (laser will not fire)
3. ACQUIRE (laser will fire during integration, then switch off)
4. ACQUIRE (laser will fire during integration, then switch off)
5. SET_LASER_ENABLE -> 0 (laser still off)
6. SET_RAMAN_MODE -> 0 (laser still off)

Raman Mode is recommended whenever possible, for the following reasons:

• Maximizes battery performance by minimizing laser on-time
• Maximizes laser MTBF by minimizing lifetime use
• Minimizes sample burning
• Maximizes operator safety by minimizing laser on-time

These benefits are mitigated by the trade-off that in Raman Mode, it is key to recognize that every
measurement will involve automatically turning on the laser. If non-Raman measurements are intended
(such as emission, reflectance, absorbance or transmission spectroscopy), it would be both incorrect and
dangerous to use Raman mode.

For this reason, Raman Mode is not the default power-on behavior, but its efficacious use by software is
recommended to maximize system performance and longevity.

Note that both Manual and Raman modes are subject to the Laser Watchdog (see below), which will
automatically deactivate the laser after the prescribed timeout regardless of how it was turned on.

Therefore, in Raman Mode, ensure that the Laser Watchdog timeout is greater than the integration time
(at least one second greater is recommended, to account for warning LED windows). And likewise, in
Manual mode, ensure the Laser Watchdog timeout is appropriate for whatever activity you are
undertaking.

ENG-0001 Rev 1.15 Raman Mode and Laser Watchdog

Mar 18, 2022 Page 64 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xFF Request

2 wValue 2 0x16 Command

4 wIndex 2 0 = disabled
1 = enabled

Raman Mode

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.14.2 Get Raman Mode (GET_RAMAN_MODE)

Queries whether the system is currently in “Raman Mode” or not. (See SET_RAMAN_MODE for
description.)

This command is only available on XS-series spectrometers.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Request
2 wValue 2 0x15 Command

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 1 if Raman Mode enabled, 0 otherwise.

4.14.3 Set Raman Delay (SET_RAMAN_DELAY)

This command (like Raman Mode) is only available on XS-Series spectrometers.

In Raman Mode, the spectrometer is responsible for turning the laser on at the beginning of an
acquisition, and turning it off again at the end of the acquisition. However, some lasers require
a warm-up delay to stabilize the output power before a repeatable (deterministic)
measurement can be taken. This command lets the host configure that delay between the start
of laser power, and the start of the actual integration.

The value is in milliseconds, which is internally converted to an appropriate clock rate based on
the current integration time (internal resolution approximately 20µs depending on FPS).

ENG-0001 Rev 1.15 Raman Mode and Laser Watchdog

Mar 18, 2022 Page 65 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xFF Request

2 wValue 2 0x20 Command

4 wIndex 2 milliseconds Raman delay in ms (0-65535)
6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.14.4 Set Laser Watchdog (SET_LASER_WATCHDOG)

This command (and laser watchdog functionality) is only available on XS-Series spectrometers.

Whether the Laser Mode is Manual or Raman, the Laser Watchdog will specify a period of
seconds after which the laser will automatically be disabled.

• Writing a 0x0000 value will disable the watchdog.

• Any other value will be taken to be an unsigned count of seconds, after which the laser
should be automatically disabled.

The laser watchdog is reset (stopwatch set to zero) whenever the laser is turned on. That is, if
you set the laser watchdog to 10sec, fire the laser, manually turn the laser off after 4sec, wait
4sec, then turn the laser on with another expected 4sec integration, the laser will not
automatically cut-off 2sec into the second integration. The 10sec watchdog will have been
reset at the beginning of each “laser on” command.

Similarly, if the watchdog expires when the laser is already disabled, no change will occur or
notification sent. (Example: if you set a 10sec watchdog, turn the laser on for 3sec, and then
manually turn the laser off, nothing will happen 7sec later.)

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xFF Request
2 wValue 2 0x18 Command

4 wIndex 2 seconds Watchdog timeout in sec (big-endian
uint16)

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.14.5 Get Laser Watchdog (GET_LASER_WATCHDOG)

Returns the current value of the Laser Watchdog.

ENG-0001 Rev 1.15 Raman Mode and Laser Watchdog

Mar 18, 2022 Page 66 of 94

This command is only available on XS-Series spectrometers.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Request

2 wValue 2 0x17 Command
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns current laser watchdog timeout value in seconds (two byte big-endian uint16).

4.14.6 Get Raman Delay (GET_RAMAN_DELAY)

Returns the current value of the Raman Delay (laser warm-up in Raman Mode).

This command is only available on XS-Series spectrometers.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xFF Request

2 wValue 2 0x19 Command
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns current Raman Delay in milliseconds (big-endian uint16).

ENG-0001 Rev 1.15 Area Scan and Detector ROI

Mar 18, 2022 Page 67 of 94

4.15 Area Scan and Detector ROI

4.15.1 Set Area Scan Enable (SET_AREA_SCAN_ENABLE)

This command is intended for manufacturing use during initial spectrometer build and
alignment, and is not recommended for customer use.

This command is supported on all 2D detectors, meaning all silicon detectors but not InGaAs.

In Area Scan mode, an ACQUIRE command will trigger a single acquisition on the 2D detector.
However, instead of that acquisition being vertically binned (summed down) into a single row
containing all the aggregate intensities of each column, a series of lines will be read-out
containing the raw pixel data for each row of the 2D image.

That is, if the detector has 64 lines (per the EEPROM’s active_pixels_vertical field), the
spectrometer will output 64 distinct “spectra” in rapid order. Each “spectrum” will correspond
to a single physical row on the detector. To aid in processing, the first pixel (spectrum[0]) is
automatically over-written with that spectrum’s row index (0-63 in this example).

The caller will be expected to rapidly read the normal spectral endpoint(s) (0x82 and perhaps
0x86 depending on model). The caller should read the expected number of spectra, as
reported in the EEPROM active_pixels_vertical field.

Re-marshalling the collected lines into a cohesive 2D image for operator analysis is then left to
the caller in software, but Wasatch can provide examples in Python or C# if needed.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xeb Request

2 wValue 2 0 or 1 Value
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.15.2 Set Detector Start Line (SET_DETECTOR_START_LINE)

Sets the first line used in the binning process of the sensor, where 0 is considered the first
horizontal row at the top of the detector.

This command is only available on XS-Series spectrometers.

ENG-0001 Rev 1.15 Area Scan and Detector ROI

Mar 18, 2022 Page 68 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xFF Request

2 wValue 2 0x21 Command

4 wIndex 2 line 16-Bit Unsigned, 0-Based Line Number
6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.15.3 Get Detector Start Line (GET_DETECTOR_START_LINE)

Gets the first horizontal line (detector row) used in the vertical binning process of the sensor.
Any rows above this (with a lower index, considering row 0 to be the top of the detector) will
not be vertically binned into the output spectrum.

This command is only available on XS-Series spectrometers.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Request
2 wValue 2 0x22 Command

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 16-bit Unsigned, 0-Based line number that the spectrum binning starts at.

4.15.4 Set Detector Stop Line (SET_DETECTOR_STOP_LINE)

Sets the line where the binning process stops for the sensor. This line is not included in the
binning process.

This command is only available on XS-Series spectrometers.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xFF Request

2 wValue 2 0x23 Command

4 wIndex 2 line 16-Bit Unsigned, 0-Based Line Number

6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Area Scan and Detector ROI

Mar 18, 2022 Page 69 of 94

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.15.5 Get Detector Stop Line (GET_DETECTOR_STOP_LINE)

Gets the line where the binning process stops for the sensor. This line is not included in the
binning process. Lines at this index, and numerically higher index values, will not be vertically
binned into the output spectrum.

This command is only available on XS-Series spectrometers.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Request

2 wValue 2 0x24 Command

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Returns 16-bit Unsigned, 0-Based line number that the spectrum binning ends at.

4.15.6 Set Detector ROI (SET_DETECTOR_ROI)

For XS-Series spectrometers with advanced region-of-interest (ROI) control, this command
allows the ROI for a single region to be set in the FPGA.

An ROI record contains several pieces of information:

• Region index (0, 1, etc): on a spectrometer supporting two detector ROIs, they will be
numbered 0 and 1. This index is passed as the wIndex to the SET_DETECTOR_ROI
command.

• ROI start line (row): y0 coordinate of the ROI

• ROI stop line (row): y1 coordinate of the ROI + 1

• ROI start pixel (column): x0 coordinate of the ROI

• ROI stop pixel (column): x1 coordinate of the ROI + 1

All of the above values are unsigned shorts (uint16). Valid ranges will be based on the installed
detector, but for an IMX385, valid rows may be considered to fall in the 1080p range (0, 1079),
and valid columns in the range (0, 1951).

Note that all ranges are defined as [start, stop), where the start value is included (closed) in the
configured range, while the stop value is excluded (open). Therefore, the start/stop lines [300,
401) indicates 100 lines will be vertically binned (lines 300 through 400, but not 401).

The SET_DETECTOR_ROI payload will therefore comprise 8 bytes (all uint16 values are little-
endian):

ENG-0001 Rev 1.15 Area Scan and Detector ROI

Mar 18, 2022 Page 70 of 94

Offset Size Name Datatype Description
0 2 y0 uint16 Start line

2 2 y1 uint16 Stop line

4 2 x0 uint16 Start pixel

6 2 x1 uint16 Stop pixel

Example:

To configure the two ROIs (R0 and R1) on an IMX385 detector, you would send the following two
SET_DETECTOR_ROI commands:

wIndex wLength Payload (y0, y1, x0, x1)

0 8 Logical: (100, 450, 400, 1400)
Physical: [0x64, 0x00, 0xc2, 0x01, 0x90, 0x01, 0x78, 0x05]

1 8 Logical: (600, 800, 100, 1200)
Physical: [0x58, 0x02, 0x20, 0x03, 0x64, 0x00, 0xb0, 0x04]

The configured ROIs must obey these rules:

• must be specified in ascending row order (R0Y0 < R0Y1 < R1Y0 < R1Y1)

• ROIs cannot overlap

To “delete” a configured ROI, you would set a fresh command to configure the specific ROI,
using values of zero for all parameters.

Example: to delete R1 (the “second” ROI, after R0), send the following Control Message:

sendCmd(bmRequestType=0x40, # HOST_TO_DEVICE
 bRequest=0xff, # SECOND_TIER_COMMAND
 wValue=0x25, # SET_DETECTOR_ROI
 wIndex=0x01, # ROI INDEX
 len=8, # PAYLOAD SIZE
 data=[0, 0, 0, 0, 0, 0, 0, 0]) # ALL VALUES ZERO

ENG-0001 Rev 1.15 Area Scan and Detector ROI

Mar 18, 2022 Page 71 of 94

This command is only available on specific XS-Series models.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xFF Request

2 wValue 2 0x25 Command
4 wIndex 2 Region Which ROI region (0-3)

6 wLength 2 8 Payload size

4.15.7 Set Pixel Mode (SET_PIXEL_MODE)

IMX detectors can operate in either 10-bit or 12-bit “pixel depth.” Similarly, they can be
populated from an ADC with either 10-bit or 12-bit dynamic range.

Pixel Width (OD) is set by bit 0, and the ADC (AD) is set by bit 1. In both cases, a zero indicates
10-bit mode, and a one indicates 12-bit mode.

This allows four possible pixel modes:

Mode (dec) Mode (binary) ADC (AD) Pixel Width (OD)
0 00b 10-bit 10-bit

1 01b 10-bit 12-bit
2 10b 12-bit 10-bit

3 11b 12-bit 12-bit

Note that the detector ROI is vertically binned into a uint16[] spectrum regardless of individual
pixel mode, so pixel mode will not change the dimensions or datatype of the output spectra.

This command is only available on specific XS-Series models.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xfd Request
2 wValue 2 0-3 Pixel Mode (b00, b01, b10 or b11)

4 wIndex 2 Region Which ROI region (0, 1…n)
6 wLength 2 8 Payload size

4.15.8 Get Area Scan Available (GET_OPT_AREA_SCAN)

Gets the area scan availability from the FPGA compilation options register.

This command is deprecated and not regularly tested. All non-InGaAs models are expected to
support area scan mode.

ENG-0001 Rev 1.15 Area Scan and Detector ROI

Mar 18, 2022 Page 72 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xFF Second tier command

2 wValue 2 0x0A Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

One byte (0 = Not available, 1 = Available)

ENG-0001 Rev 1.15 Shutter Control

Mar 18, 2022 Page 73 of 94

4.16 Shutter Control

4.16.1 Set Shutter Enable (SET_SHUTTER_ENABLE)

This command enables (closes, obstructs light) or disables (opens, passes light) the internal
shutter in appropriately equipped non-Raman spectrometers with Gen 1.5 electronics and a
suitable shutter module.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0x30 Request

2 wValue 2 0 (disable) or
1 (enable)

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.16.2 Get Shutter Enable (GET_SHUTTER_ENABLE)

This queries the spectrometer to determine whether the integrated shutter is currently enabled
(closed, obstructing light) or disabled (open, transmitting light).

This command is only available on non-Raman spectrometers with Gen 1.5 electronics and an
appropriate shutter module.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0x31 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns a single byte: 1 if shutter enabled (closed, obstructing light), 0 otherwise.

ENG-0001 Rev 1.15 Fan Control

Mar 18, 2022 Page 74 of 94

4.17 Fan Control

4.17.1 Set Fan Enable (SET_FAN_ENABLE)

This command enables (spins) the fan in suitably equipped non-Raman spectrometers with Gen
1.5 electronics and an integrated fan.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0x36 Request
2 wValue 2 0 (disable) or

1 (enable)
Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.17.2 Get Fan Enable (GET_FAN_ENABLE)

This queries the spectrometer to determine whether the integrated fan is currently enabled.

This command is only available on spectrometers with Gen 1.5 electronics and an appropriate
fan module.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0x37 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns a single byte: 1 if fan enabled, 0 otherwise.

ENG-0001 Rev 1.15 Ambient Temperature

Mar 18, 2022 Page 75 of 94

4.18 Ambient Temperature

4.18.1 Get Ambient Temperature (GET_AMBIENT_TEMPERATURE)

This queries the spectrometer to provide a reading of ambient temperature in degrees Celsius
using a board-mounted LM75B. Note that this differs from GET_DETECTOR_TEMPERATURE,
which specifically measures the temperature of the sensor itself.

Supported theoretical values (per the component datasheet, not the spectrometer’s operating
range) are:

• −55C to +125C

• 11-bit ADC with resolution of 0.125C

• Accuracy

o 2C from −25C to +100C

o 3C from −55C to +125C

This command is only available on non-Raman spectrometers with Gen 1.5 electronics.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0x35 Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns temperature in degrees Celsius as a big-endian 2-byte value.

See extract of LM75B below for how to interpret the two bytes.

https://www.nxp.com/docs/en/data-sheet/LM75B.pdf
https://www.nxp.com/docs/en/data-sheet/LM75B.pdf

ENG-0001 Rev 1.15 Ambient Temperature

Mar 18, 2022 Page 76 of 94

Figure 1 Extract from https://www.nxp.com/docs/en/data-sheet/LM75B.pdf

ENG-0001 Rev 1.15 Untethered Devices

Mar 18, 2022 Page 77 of 94

4.19 Untethered Devices

These commands are used to administer untethered devices which can operate independent of
USB or BLE control.

4.19.1 GET_STORAGE_BLOCK

This command is functionally similar to GET_MODEL_CONFIG, but references a device’s
onboard FRAM non-volatile storage rather than EEPROM. The caller is expected to know the
maximum supported range of 64-byte addressable pages.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xff Second tier command

2 wValue 2 0x25 Value

4 wIndex 2 Page index Range variable by model
6 wLength 2 64 Payload size

Response

This command returns 64 bytes (the size of a single FRAM page). Refer to device
documentation for appropriate parsing and demarshalling of a particular page’s contents, and
the number of supported pages.

4.19.2 ERASE_STORAGE

This command erases storage on supported devices

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xff 2nd-tier command

2 wValue 2 0x26 Request
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.19.3 TRIGGER_FEEDBACK

On devices which have some form of direct user feedback, this allows a connected host to
trigger (generate, or initiate) a pre-configured response by integral value. Consult device
documentation for the supported range of configured sequences on a particular device.

ENG-0001 Rev 1.15 Untethered Devices

Mar 18, 2022 Page 78 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xff 2nd-tier command

2 wValue 2 0x27 Request

4 wIndex 2 Index Index of pre-configured sequence or
UX pattern

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful, non-zero if unsuccessful.

4.19.4 UNTETHERED_CAPTURE_STATUS / POLL_DATA

The command returns a value indicating the current untethered capture state.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xD4 Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Response as 1 byte on Endpoint 0.

Byte
Number

Size Value

1 1 0 = IDLE
1 = dark measurement
2 = laser warmup
3 = sample measurement
4 = processing

ENG-0001 Rev 1.15 Board State

Mar 18, 2022 Page 79 of 94

4.20 Board State

4.20.1 Set DFU Mode (SET_DFU_MODE)

This command will immediately transition ARM-based spectrometers into DFU (Dynamic
Firmware Update) mode. As soon as a spectrometer enters DFU mode, it is no longer
responsive to the Wasatch Photonics USB API, and essentially ceases to be a “spectrometer” for
purposes of data communications. It has become an ARM chip awaiting firmware installation
via DeFUse Demonstrator or similar utility.

Once DFU mode is enabled, the only way to disable it (as it no longer listens to USB
spectrometer commands) is to power-cycle the device.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xfe Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

No response is possible, as the spectrometer will no longer be acting under the original VID and
PID; ongoing communications will be disrupted entirely.

4.20.2 Reset Field-Programmable Gate Array (RESET_FPGA)

This command will attempt to “reset” the FPGA if it has entered a non-cooperative state.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xb5 Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

4.20.3 Set Feedback (SET_FEEDBACK)

On devices which have some form of direct user feedback, this allows a connected host to
initiate a pre-configured response by integral value. Consult device documentation for the
supported range of configured feedback sequences on a particular device. (wIndex may be
internally coded to support repetitions of a particular sequence.)

ENG-0001 Rev 1.15 Board State

Mar 18, 2022 Page 80 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xff 2nd-tier command

2 wValue 2 0x27 Request

4 wIndex 2 0xAABB AA (MSB): feedback function (e.g. 0-6)
BB (LSB): repetitions (0-255)

6 wLength 2 0 Payload size

ENG-0001 Rev 1.15 Horizontal Binning Commands (Deprecated)

Mar 18, 2022 Page 81 of 94

4.21 Horizontal Binning Commands (Deprecated)

4.21.1 Select Horizontal Binning (SET_HORIZONTAL_BINNING)

The command selects the type of horizontal binning performed on the sensor data, if any. 0
selects no binning. 1 selects two-pixel binning. 2 selects four-pixel binning. On reset no
binning is selected.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xB8 Request
2 wValue 2 0 = no binning

1 = 2-pixel
binning
2 = 4-pixel
binning

Binning mode

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if command was successful. Returns value < 0 if unsuccessful.

4.21.2 Get Horizontal Binning (GET_HORIZONTAL_BINNING)

The command returns the selected horizontal binning mode.

This command is deprecated and not currently tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host
1 bRequest 1 0xBC Request

2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Response is 0 (no binning), 1 (2-pixel binning) or 2 (4-pixel binning) on endpoint 0.

ENG-0001 Rev 1.15 Horizontal Binning Commands (Deprecated)

Mar 18, 2022 Page 82 of 94

4.21.3 Get Horizontal Binning Available (GET_OPT_HORIZONTAL_BINNING)

Gets the horizontal binning availability from the FPGA compilation options register.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xFF Second tier command

2 wValue 2 0x0C Value
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

One byte (0 = Not available, 1 = Available)

ENG-0001 Rev 1.15 Sensor Data Threshold Commands (Deprecated)

Mar 18, 2022 Page 83 of 94

4.22 Sensor Data Threshold Commands (Deprecated)

These commands were added in the past for legacy products, but are not regularly tested or
verified in our current firmware. They may work; they may not; they may produce undefined
behavior. Any could be “resurrected,” updated and revalidated if customer requirements
merit.

4.22.1 Set Detector Data Threshold Sensing (SET_DETECTOR_THRESHOLD_SENSING_MODE)

The command enables or disables data threshold sensing of the detector data. When enabled,
each pixel of the incoming detector data is compared to a user-defined threshold. If any pixel
exceeds the threshold, a bit in the FPGA status register is set. When disabled, the status bit is
always low. On reset, detector data threshold sensing is disabled.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0x40 Host → Device

1 bRequest 1 0xCE Request
2 wValue 2 0 = disable

1 = enable
Value

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.22.2 Get Detector Data Threshold Sensing Mode
(GET_DETECTOR_THRESHOLD_SENSING_MODE)

The command reads the state of the CCD Data Threshold Sensing mode.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xCF Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

Response is 0 (threshold sensing disabled) or 1 (threshold sensing enabled) on endpoint 0.

ENG-0001 Rev 1.15 Sensor Data Threshold Commands (Deprecated)

Mar 18, 2022 Page 84 of 94

4.22.3 Set Detector Data Sensing Threshold Level (SET_DETECTOR_SENSING_THRESHOLD)

Sets the threshold for sensing the detector data. If any value in the detector data frame
exceeds this setpoint, then the POLL_DATA command will return a value of 2 rather than 1.
Defaults to 0 on reset.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xD0 Request

2 wValue 2 Threshold Value (uint16)

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.22.4 Get Detector Data Sensing Threshold (GET_DETECTOR_SENSING_THRESHOLD)

The command reads the detector data sensing threshold.

This command is deprecated, and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xD1 Request

2 wValue 2 0xXXXX Ignored
4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Response shows up as two bytes on endpoint 0 (LSB first).

ENG-0001 Rev 1.15 Continuous Acquisition (Deprecated)

Mar 18, 2022 Page 85 of 94

4.23 Continuous Acquisition (Deprecated)

4.23.1 Enable/Disable Continuous Acquisition (SET_CONTINUOUS_ACQUISITION)

This command enables or disables continuous read mode from the CCD. When continuous
acquisition is enabled AND external triggering is enabled, a single trigger event will trigger
multiple spectral acquisitions. The number of acquisitions to perform is set by the
SET_CONTINUOUS_FRAMES command, below.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xC8 Request

2 wValue 2 0 = disabled
1 = enabled

Value

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.23.2 Get Continuous Acquisition (GET_CONTINUOUS_ACQUISITION)

This command reads whether continuous acquisition mode is enabled.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description

0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xCC Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns 0 if disabled, 1 if enabled.

4.23.3 Set Continuous Frame Count (SET_CONTINUOUS_FRAMES)

Sets number of frames to read after a trigger pulse is received while “Continuous Acquisition” is
enabled.

This command is deprecated and not regularly tested.

ENG-0001 Rev 1.15 Continuous Acquisition (Deprecated)

Mar 18, 2022 Page 86 of 94

Format

Offset Field Size Value Description

0 bmRequestType 1 0x40 Host → Device
1 bRequest 1 0xC9 Request

2 wValue 2 frames Number of frames (0-255)

4 wIndex 2 0xXXXX Ignored
6 wLength 2 0 Payload size

Response

ARM-based products return 0 if command was successful. Returns value < 0 if unsuccessful.
FX2-based products return 1 for success and 0 if unsuccessful.

4.23.4 Get Continuous Frame Count (GET_CONTINUOUS_FRAMES)

Reads number of frames to read after a trigger pulse is received when in “Continuous
Acquisition” mode.

This command is deprecated and not regularly tested.

Format

Offset Field Size Value Description
0 bmRequestType 1 0xC0 Device → Host

1 bRequest 1 0xCD Request
2 wValue 2 0xXXXX Ignored

4 wIndex 2 0xXXXX Ignored

6 wLength 2 0 Payload size

Response

Returns number of frames as one byte (0-255).

ENG-0001 Rev 1.15 Continuous Acquisition (Deprecated)

Mar 18, 2022 Page 87 of 94

5 Acquisition Workflows
Working source code examples of most USB commands can be found for a number of common
programming languages:

• C/C++: https://github.com/WasatchPhotonics/Wasatch.VCPP

• Python: https://github.com/WasatchPhotonics/Python-USB-WP-Raman-Examples
(single-command unit-tests)

• Python: https://github.com/WasatchPhotonics/Wasatch.PY (application-level driver and
demo)

• C#: https://github.com/WasatchPhotonics/Wasatch.NET (application-level driver and
demo)

• Delphi: https://github.com/WasatchPhotonics/Wasatch.Delphi (application demo)

• LabVIEW: https://github.com/WasatchPhotonics/Wasatch.LV (application demo)

• MATLAB: https://github.com/WasatchPhotonics/Wasatch.MATLAB (application demo)

In addition, detailed engineering-level walkthroughs of the all-important spectral acquisition,
laser control and external triggering procedures are discussed below.

https://github.com/WasatchPhotonics/Wasatch.VCPP
https://github.com/WasatchPhotonics/Python-USB-WP-Raman-Examples
https://github.com/WasatchPhotonics/Wasatch.PY
https://github.com/WasatchPhotonics/Wasatch.NET
https://github.com/WasatchPhotonics/Wasatch.Delphi
https://github.com/WasatchPhotonics/Wasatch.LV
https://github.com/WasatchPhotonics/Wasatch.MATLAB

ENG-0001 Rev 1.15 Spectral Acquisition

Mar 18, 2022 Page 88 of 94

5.1 Spectral Acquisition

Data acquisition can be triggered by a USB command, “Acquire Image” for all product
configurations. Data acquisition can also be started by an external trigger event (positive TTL
transition). The external trigger is injected on pin 2 of USB Board connector J6.

When properly configured, either the USB command or an external trigger event causes an
integration to occur and the resultant data to appear. The data for standard 1024-pixel
spectrometers appears on Endpoint 2 as 1024 words (LSB first). NIR spectrometers may have
fewer than 1024 pixels, and other spectrometers may have more than 1024 pixels. On
spectrometers using linear-array detectors with more than 1024 pixels, the pixels above zero-
indexed 1023 will appear on Endpoint 6. (Spectrometers with 2D image sensors such as the XS-
Series output all pixels on Endpoint 2.)

Use the GET_LINE_LENGTH command to confirm the number of pixels on your detector; all
currently shipping spectrometers use a 16-bit unsigned integer to store intensity, so the
number of bytes to read will be 2 * line_length.

Whatever number of bytes are to be read from a given endpoint, the spectrometer supports
reading them either in one large read or a series of smaller reads. For instance, working
applications have been deployed which perform a bulk-read of 2048 bytes, or a series of four
512-byte blocks. The following diagram shows four sequential reads of 512-bytes each.

ENDPOINT 2: QUAD-BUFFER: Each 512 bytes

LSB
Pixel 0

MSB
Pixel 0

LSB
Pixel 1

MSB
Pixel 1

LSB
Pixel 255

MSB
Pixel 255

CCD_Data[0:255] = bulk_read()

CCD_Data[1024] unsigned short

LSB
Pixel 256

MSB
Pixel 256

LSB
Pixel 257

MSB
Pixel 257

LSB
Pixel 511

MSB
Pixel 511

CCD_Data[256:511] = bulk_read()

LSB
Pixel 512

MSB
Pixel 512

LSB
Pixel513

MSB
Pixel 513

LSB
Pixel 767

MSB
Pixel 767

CCD_Data[512:767] = bulk_read()

LSB
Pixel 768

MSB
Pixel 768

LSB
Pixel 769

MSB
Pixel 769

LSB
Pixel 1023

MSB
Pixel 1023

CCD_Data[768:1023] = bulk_read()

ENG-0001 Rev 1.15 Software-commanded USB Acquisition (internal
laser @ 100% power)

Mar 18, 2022 Page 89 of 94

5.2 Software-commanded USB Acquisition (internal laser @ 100% power)

A simple USB-command initiated capture event command workflow with manual control of the
output trigger (laser) would typically follow these steps (these assume you’ve found and gotten
a handle to an open USB device – see libusb-win32 drivers):

In order to disable modulating the trigger “output” signal, the following two commands should
be executed:

1. LINK_MOD_TO_INTEGRATION = 0
2. MOD_ENABLE = 0

The following will set up the detector for a USB-based acquisition with a user-defined
integration time (in milliseconds) on a spectrometer with 1024 pixels:

3. SET_INTEGRATION_TIME = 100 // or other value in ms
4. SET_TRIGGER_SOURCE = 0 // USB command initiated trigger

To set external trigger signal “high” (enable external laser) and initiate a USB-based acquisition:

5. SET_LASER_ENABLE = 1
6. ACQUIRE_SPECTRUM
7. Either

a. sleep(100) // wait for the integration time in milliseconds, or
b. while POLL_DATA == 0: sleep(1)

8. Either
a. perform four bulk reads on Endpoint 2 of 512 bytes each, or
b. perform a single read of 2048 bytes

9. SET_LASER_ENABLE = 0 // if measurement is complete (no scan averaging
etc)

10. demarshall received buffers into 1024 16-bit words (LSB first)

ENG-0001 Rev 1.15 Software-commanded USB Acquisition (external
laser @ 50% power)

Mar 18, 2022 Page 90 of 94

5.3 Software-commanded USB Acquisition (external laser @ 50% power)

A simple USB-command initiated capture event command workflow with user-defined
parameter control of the output trigger (laser) would typically follow these steps (these assume
you’ve found and gotten a handle to an open USB device – see libusb-win32 drivers):

In order to enable modulating the trigger “out” signal, the following three commands should be
executed:

1. MOD_LINKED_TO_INTEGRATION = 1
2. MOD_ENABLE = 1
3. LASER_ENABLE = 1

The following will set up the detector for a USB-based acquisition with a user-defined
integration time (in milliseconds):

4. SET_INTEGRATION_TIME = 100 // or other time in ms
5. SET_TRIGGER_SOURCE = 0 // USB command initiated trigger

SPECIFIC EXAMPLE: To initiate a 5ms pulse at 50% power starting 1.5ms after receiving a USB-
initiated acquisition, set the following values:

6. MOD_PULSE_DELAY = 1500 // 1.5ms in µs
7. MOD_PULSE_WIDTH = 2500 // 50% of PULSE_PERIOD
8. MOD_PULSE_PERIOD = 5000
9. MOD_PULSE_DURATION = 5000 // For single pulse, PERIOD=DURATION

Resume normal acquisition processing:

10. ACQUIRE_SPECTRUM
11. Either

a. sleep(100) // wait for the integration time in milliseconds, or
b. while POLL_DATA == 0: sleep(1)

12. Either
c. perform four bulk reads on Endpoint 2 of 512 bytes each, or
d. perform a single read of 2048 bytes

13. SET_LASER_ENABLE = 0 // if measurement is complete (no scan averaging
etc)

14. demarshall received buffers into 1024 16-bit words (LSB first)

ENG-0001 Rev 1.15 Externally Triggered Acquisition

Mar 18, 2022 Page 91 of 94

5.4 Externally Triggered Acquisition

Triggering is supported on Wasatch Photonics ARM spectrometers. See ENG-0085 for details
on the “OEM Connector” on the ARM USB Board (PN 110378). In short, a 3.3V (LVTTL) signal
may be applied to pin 10 of connector J8, using pins 5, 9 or 15 for GND.

An externally triggered capture event would typically follow these steps (these assume you’ve
found and gotten a handle to an open USB device – See libusb-win32 drivers):

To ensure the laser won’t fire until the triggered acquisition begins (i.e., the laser doesn’t sit
there firing for minutes or hours until the trigger signal arrives), “link” the laser modulation to
the integration time:

1. MOD_LINKED_TO_INTEGRATION = 1
2. MOD_ENABLE = 1
3. LASER_ENABLE = 1 // per linkage, shouldn’t actually fire until “get_spectrum”

The following will configure the detector for an externally triggered acquisition:

4. TRIGGER_SOURCE = 1 // external triggering

To set up pulsed output operation (external laser), it is important to understand how
integration time and external out trigger (aka “ext_light_source_enable”) are related. The
external trigger settings have priority over any integration time setting. That is, when an input
trigger is sensed by the instrument, the instrument will delay PULSE_DELAY microseconds
(minimum value = 1000 microseconds), turn on the laser for PERIOD=DURATION microseconds
and then turn off the laser, while the integration time (if shorter) will be extended to match the
output pulse of the laser.

Therefore, if the laser integration time is 4 ms, but the output pulse is 5000 µs long, then the
currently executing integration time window will be extended to ensure that the laser pulse
falls completely within a single integration time window. This means that it is advisable to set
the integration time < output pulse-width so that minimal superfluous integration will occur.

5.4.1 SPECIFIC EXAMPLE

To initiate a 5 ms pulse, starting 1.5 ms after receiving an externally triggered acquisition, set
the following values:

1. INTEGRATION_TIME = 4 // (ms) Integration time < pulse delay + period.
2. MOD_PULSE_DELAY = 1500 // (µs)
3. MOD_PULSE_WIDTH = 5000 // (µs) (full power)
4. MOD_PULSE_PERIOD = 5000 // (µs)
5. MOD_PULSE_DURATION = 5000 // (µs) (single pulse)

Then, it is advisable to check the current frame number. After n “known external trigger
events” have occurred, one can check this to verify that the spectrometer correctly acquired
exactly n spectra.

6. n = GET_ACTUAL_FRAMES

The acquisition state machine should proceed as follows:

ENG-0001 Rev 1.15 Externally Triggered Acquisition

Mar 18, 2022 Page 92 of 94

1. POLL_DATA continuously or at least 4X-5X the minimum input inter-pulse period (the
expected period between incoming external trigger signals). If POLL_DATA > 0 then data
is sitting in USB buffer Endpoint 2.

2. Four bulk reads on Endpoint 2 of 512 bytes each (or one read of 2048 bytes)
3. Assemble (left to right) into 1024 16-bit words (LSB first)

ENG-0001 Rev 1.15 Externally Triggered Acquisition

Mar 18, 2022 Page 93 of 94

6 Detector Timing and External Laser Triggering
The firmware allows a periodic signal within the laser "duration" window. That is, modulation
width and modulation period can be set (where width <= period) smaller than duration, and
multiple pulses will "fit" inside the “modulation duration” window.

While one can always set an integration window width, one can't control when an integration
will truly start due to the constant detector flushing cycle.

In the example above, the input trigger occurred during a horizontal clocking cycle. Since the
vertical pixels are untouched, this can be counted as integration. In the above scenario, the
firmware latches the input trigger, delays 2.5 ms, turns on the laser for 3 ms. So the actual
integration would be ~7 ms, even if the user said the integration was to last < 7 ms. The above
clocking scenario can handle up to 100 frames/sec. A single laser pulse is achieved by setting
duration = period. More details on external triggering control are below.

Stated differently, Wasatch spectrometers internally run a constant “free-running mode,” and
just throw away most of the spectra they collect. A conceptual difference between Wasatch
electronics and some commercial alternatives is that some spectrometer designs cache the
result of every spectrum, and when “get_spectrum” is called, return the last-collected cache (if
one exists), then deletes the cache (so the same spectrum can’t be read twice).

In contrast, Wasatch spectrometers never return an “old” spectrum completed before the
“acquire spectrum” command is received, but they may — as in this example — return a
spectrum whose integration had already started before the get_spectrum command was
received.

The following section details the parameters related to laser (external) triggering. The timing of
the external triggering is absolute with respect to an input trigger. The system with
microsecond accuracy will output a pulse based on the rising edge of an input trigger with
characteristics defined by duration, period, width and delay.

The diagram below illustrates the concept:

2.5 msec
DELAY

Horizontal Clocking
(4.1 msec)

Horizontal Clocking
(4.1 msec)

Horizontal Clocking
(4.1 msec)

Vertical clocking
(~0.2 msec)

Vertical clocking
(~0.2 msec)

Vertical clocking
(~0.2 msec)

INPUT
TRIGGER

Laser On

INTEGRATION

Pulse width= 3msec

Actual Integration

Vertical + Horizontal
Clocking + Data Sent
to USB

ENG-0001 Rev 1.15 Externally Triggered Acquisition

Mar 18, 2022 Page 94 of 94

Four parameters define the above external trigger (laser) behavior. All parameters are
independent of integration time and are enabled using the MOD_ENABLE = 1 and
SET_LASER_ENABLE = 1 commands illustrated in the example in Section 4.3.

Pulse Delay: Defines the delay, in microseconds, from the input trigger, after which the
leading edge of the output trigger will begin.

Pulse Period: After setting the pulse delay, the pulse period “clock” is enabled, which
establishes the full period (in microseconds) of an ongoing series or train of laser pulses. If laser
modulation is enabled, then the laser will be firing for some percentage of each period (as
much as 100%), and disabled for the remainder of the period — this is controlled via pulse
width, below.

Pulse Width: The pulse width (on-time) of the pulse period cycle in microseconds. Note that a
pulse period is defined by an on-time first, then off-time cycle. Pulse width is used to control
the output laser power. If the pulse width == pulse period, the laser is operating at full power
(equivalent to disabling laser modulation). If the pulse width is less than the pulse period, then
the output laser power will equal the fraction (width / period). Behavior when the width
exceeds the period is undefined.

Pulse Duration: The total pulse cycle duration. The laser will be shut off at time defined by
duration (measured from the end of the delay time) whatever phase the laser pulse cycle is
currently in. Therefore, the “last” pulse in a pulse train can be shortened below the defined
pulse width.

As described in the first “single pulse” example above, the duration and period should be set
equal to each other.

	Revision Log
	1 General Description
	2 USB Connection to device
	2.1 USB device drivers
	2.2 libusb-win32 drivers
	2.2.1 C Example

	3 Command Matrix
	3.1 Command Table

	4 Command Detail
	4.1 Metadata
	4.1.1 Get Microcontroller Firmware Version (GET_FIRMWARE_VERSION)
	Format
	Response

	4.1.2 Get FPGA Firmware Revision (GET_FPGA_FIRMWARE_VERSION)
	Format
	Response

	4.1.3 Get Sensor Line Length (GET_LINE_LENGTH)
	Format
	Response

	4.1.4 Get FPGA Compilation Options (READ_COMPILATION_OPTIONS)
	Format
	Response

	4.1.5 Get Internal Frame Count (GET_ACTUAL_FRAMES)
	Format
	Response

	4.1.6 Get Data Header or Tag (GET_OPT_DATA_HEADER_TAG)
	Format
	Response

	4.2 EEPROM Control
	4.2.1 Get Model Info (GET_MODEL_CONFIG)
	Format
	Response

	4.2.2 Set Model Info (SET_MODEL_CONFIG)
	Format (FX2)
	Format (ARM)
	Response

	4.3 Spectral Acquisition
	4.3.1 Acquire Spectrum (ACQUIRE)
	Format
	Response

	4.4 Integration Time Control
	4.4.1 Set Integration Time (SET_INTEGRATION_TIME)
	Format
	Response

	4.4.2 Get Integration Time (GET_INTEGRATION_TIME)
	Format
	Response

	4.4.3 Get Actual Integration Time (GET_ACTUAL_INTEGRATION_TIME)
	Format
	Response

	4.4.4 Get Actual Integration Time Available (GET_OPT_ACTUAL_INTEGRATION_TIME)
	Format
	Response

	4.4.5 Get Integration Time Resolution (GET_OPT_INTEGRATION_TIME_RESOLUTION)
	Format
	Response

	4.5 Detector Gain and Offset Control
	4.5.1 Set Detector Offset (SET_DETECTOR_OFFSET)
	Format
	Response

	4.5.2 Set Detector Offset Odd (SET_DETECTOR_OFFSET_ODD)
	Format
	Response

	4.5.3 Set Detector Gain (SET_DETECTOR_GAIN)
	Float16 format
	Hamamatsu CCD Notes
	Sony IMX Implementation
	Format
	Response

	4.5.4 Set Detector Gain Odd (SET_DETECTOR_GAIN_ODD)
	Format
	Response

	4.5.5 Get Detector Offset (GET_DETECTOR_OFFSET)
	Format
	Response

	4.5.6 Get Detector Offset Odd (GET_DETECTOR_OFFSET_ODD)
	Format
	Response

	4.5.7 Get Detector Gain (GET_DETECTOR_GAIN)
	Format
	Response

	4.5.8 Get Detector Gain Odd (GET_DETECTOR_GAIN_ODD)
	Format
	Response

	4.6 Laser Control
	4.6.1 Laser Interlock Overview
	4.6.2 Set Laser Enable (SET_LASER_ENABLE)
	Format
	Response

	4.6.3 Get Laser Enable (GET_LASER_ENABLE)
	Format
	Response

	4.6.4 Get Laser Temperature (GET_LASER_TEMPERATURE, aka GET_ADC)
	Format
	Response

	4.6.5 Set Laser TEC Setpoint (SET_LASER_TEC_SETPOINT)
	Format
	Response

	4.6.6 Get Laser TEC Setpoint (GET_LASER_TEC_SETPOINT)
	Format
	Response

	4.6.7 Get Laser Type Available (GET_OPT_LASER_TYPE)
	Format
	Response

	4.6.8 Get Laser Interlock (GET_LASER_INTERLOCK)
	Format
	Response

	4.6.9 Get Laser Is Firing (GET_LASER_IS_FIRING)
	Format
	Response

	4.6.10 Set Laser Power Ramping (SET_LASER_RAMPING_MODE)
	Format
	Response

	4.6.11 Get Laser Power Ramping Mode (GET_LASER_RAMPING_MODE)
	Format
	Response

	4.6.12 Get Laser Control Type Available (GET_OPT_LASER_CONTROL)
	Format
	Response

	4.7 Modulation Control
	Raman Spectrometers
	Non-Raman Gen 1.5 Spectrometers
	Uint40 Parameters
	4.7.1 Set Modulation Pulse Period (SET_MOD_PULSE_PERIOD)
	Format

	4.7.2 Get Modulation Pulse Period (GET_MOD_PULSE_PERIOD)
	Format
	Response

	4.7.3 Set Modulation Pulse Width (SET_MOD_PULSE_WIDTH)
	Format

	4.7.4 Get Modulation Pulse Width (GET_MOD_PULSE_WIDTH)
	Format
	Response

	4.7.5 Set Modulation Enable (SET_MOD_ENABLE)
	Raman Spectrometers
	Non-Raman Gen 1.5
	Format
	Response

	4.7.6 Get Modulation Enable (GET_MOD_ENABLE)
	Raman Spectrometers
	Non-Raman Gen 1.5
	Format
	Response

	4.7.7 Set Modulation Pulse Delay (SET_MOD_PULSE_DELAY)
	Raman Spectrometers
	Non-Raman Gen 1.5
	Format
	Response

	4.7.8 Get Modulation Delay (GET_MOD_PULSE_DELAY)
	Format
	Response

	4.7.9 Set Modulation Duration (SET_ MOD_DURATION)
	Format
	Response

	4.7.10 Get Modulation Duration (GET_ MOD_DURATION)
	Format
	Response

	4.7.11 Set Modulation Linked to Integration (SET_MOD_LINKED_TO_INTEGRATION)
	Raman Spectrometers
	Non-Raman Gen 1.5
	Format
	Response

	4.7.12 Get Modulation Linked to Integration Time (GET_MOD_LINKED_TO_INTEGRATION)
	Format
	Response

	4.8 Accessory Connector Control
	4.8.1 Set Accessory Enable (SET_ACCESSORY_ENABLE)
	Format

	4.8.2 Get Accessory Enable (GET_ACCESSORY_ENABLE)
	Format
	Response

	4.9 Lamp Control
	4.9.1 Set Lamp Enable (SET_LAMP_ENABLE)
	Format
	Response

	4.9.2 Get Lamp Enable (GET_LAMP_ENABLE)
	Format
	Response

	4.9.3 Set Strobe Enable (SET_STROBE_ENABLE)
	Format

	4.9.4 Get Strobe Enable (GET_STROBE_ENABLE)
	Format
	Response

	4.10 Detector Temperature Control
	4.10.1 Set Detector Thermo-Electric Cooler Enable (SET_DETECTOR_TEC_ENABLE)
	Format
	Response

	4.10.2 Get Detector TEC Enable (GET_DETECTOR_TEC_ENABLE)
	Format
	Response

	4.10.3 Get Detector Temperature (GET_DETECTOR_TEMPERATURE)
	Format
	Response

	4.10.4 Set Detector TEC Setpoint / Set DAC (SET_DETECTOR_TEC_SETPOINT)
	Format
	Response

	4.10.5 Get Detector TEC Setpoint / Get DAC (GET_DETECTOR_TEC_SETPOINT, aka GET_DAC)
	Format
	Response

	4.10.6 Select ADC (SET_SELECTED_ADC)
	Format
	Response

	4.10.7 Get Selected ADC (GET_SELECTED_ADC)
	Format
	Response

	4.11 Trigger Control
	4.11.1 Set Trigger Source (SET_TRIGGER_SOURCE)
	Format
	Response

	4.11.2 Get Trigger Source (GET_TRIGGER_SOURCE)
	Format
	Response

	4.11.3 Set Trigger Delay (SET_TRIGGER_DELAY)
	Format
	Response

	4.11.4 Get Trigger Delay (GET_TRIGGER_DELAY)
	Format
	Response

	4.11.5 Select Trigger Output (SET_TRIGGER_OUTPUT)
	Format
	Response

	4.11.6 Get Trigger Output (GET_TRIGGER_OUTPUT)
	Format
	Response

	4.12 High-Gain Mode
	4.12.1 Set High-Gain Mode Enable (SET_HIGH_GAIN_MODE_ENABLE)
	Format

	4.12.2 Get High Gain Mode Enable (GET_HIGH_GAIN_MODE_ENABLE)
	Format
	Response

	4.12.3 Get CF Select Available (GET_OPT_CF_SELECT)
	Format
	Response

	4.13 Battery Control
	4.13.1 Get Battery state (GET_BATTERY_STATE)
	Format
	Response

	4.13.2 Get battery register (GET_BATTERY_REG)
	Format
	Response

	4.14 Raman Mode and Laser Watchdog
	4.14.1 Set Raman Mode (SET_RAMAN_MODE)
	Format
	Response

	4.14.2 Get Raman Mode (GET_RAMAN_MODE)
	Format
	Response

	4.14.3 Set Raman Delay (SET_RAMAN_DELAY)
	Format
	Response

	4.14.4 Set Laser Watchdog (SET_LASER_WATCHDOG)
	Format
	Response

	4.14.5 Get Laser Watchdog (GET_LASER_WATCHDOG)
	Format
	Response

	4.14.6 Get Raman Delay (GET_RAMAN_DELAY)
	Format
	Response

	4.15 Area Scan and Detector ROI
	4.15.1 Set Area Scan Enable (SET_AREA_SCAN_ENABLE)
	Format
	Response

	4.15.2 Set Detector Start Line (SET_DETECTOR_START_LINE)
	Format
	Response

	4.15.3 Get Detector Start Line (GET_DETECTOR_START_LINE)
	Format
	Response

	4.15.4 Set Detector Stop Line (SET_DETECTOR_STOP_LINE)
	Format
	Response

	4.15.5 Get Detector Stop Line (GET_DETECTOR_STOP_LINE)
	Format
	Response

	4.15.6 Set Detector ROI (SET_DETECTOR_ROI)
	Format

	4.15.7 Set Pixel Mode (SET_PIXEL_MODE)
	Format

	4.15.8 Get Area Scan Available (GET_OPT_AREA_SCAN)
	Format
	Response

	4.16 Shutter Control
	4.16.1 Set Shutter Enable (SET_SHUTTER_ENABLE)
	Format
	Response

	4.16.2 Get Shutter Enable (GET_SHUTTER_ENABLE)
	Format
	Response

	4.17 Fan Control
	4.17.1 Set Fan Enable (SET_FAN_ENABLE)
	Format
	Response

	4.17.2 Get Fan Enable (GET_FAN_ENABLE)
	Format
	Response

	4.18 Ambient Temperature
	4.18.1 Get Ambient Temperature (GET_AMBIENT_TEMPERATURE)
	Format
	Response

	4.19 Untethered Devices
	4.19.1 GET_STORAGE_BLOCK
	Format
	Response

	4.19.2 ERASE_STORAGE
	Format
	Response

	4.19.3 TRIGGER_FEEDBACK
	Format
	Response

	4.19.4 UNTETHERED_CAPTURE_STATUS / POLL_DATA
	Format
	Response

	4.20 Board State
	4.20.1 Set DFU Mode (SET_DFU_MODE)
	Format
	Response

	4.20.2 Reset Field-Programmable Gate Array (RESET_FPGA)
	Format

	4.20.3 Set Feedback (SET_FEEDBACK)
	Format

	4.21 Horizontal Binning Commands (Deprecated)
	4.21.1 Select Horizontal Binning (SET_HORIZONTAL_BINNING)
	Format
	Response

	4.21.2 Get Horizontal Binning (GET_HORIZONTAL_BINNING)
	Format
	Response

	4.21.3 Get Horizontal Binning Available (GET_OPT_HORIZONTAL_BINNING)
	Format
	Response

	4.22 Sensor Data Threshold Commands (Deprecated)
	4.22.1 Set Detector Data Threshold Sensing (SET_DETECTOR_THRESHOLD_SENSING_MODE)
	Format
	Response

	4.22.2 Get Detector Data Threshold Sensing Mode (GET_DETECTOR_THRESHOLD_SENSING_MODE)
	Format
	Response

	4.22.3 Set Detector Data Sensing Threshold Level (SET_DETECTOR_SENSING_THRESHOLD)
	Format
	Response

	4.22.4 Get Detector Data Sensing Threshold (GET_DETECTOR_SENSING_THRESHOLD)
	Format
	Response

	4.23 Continuous Acquisition (Deprecated)
	4.23.1 Enable/Disable Continuous Acquisition (SET_CONTINUOUS_ACQUISITION)
	Format
	Response

	4.23.2 Get Continuous Acquisition (GET_CONTINUOUS_ACQUISITION)
	Format
	Response

	4.23.3 Set Continuous Frame Count (SET_CONTINUOUS_FRAMES)
	Format
	Response

	4.23.4 Get Continuous Frame Count (GET_CONTINUOUS_FRAMES)
	Format
	Response

	5 Acquisition Workflows
	5.1 Spectral Acquisition
	5.2 Software-commanded USB Acquisition (internal laser @ 100% power)
	5.3 Software-commanded USB Acquisition (external laser @ 50% power)
	5.4 Externally Triggered Acquisition
	5.4.1 SPECIFIC EXAMPLE

	6 Detector Timing and External Laser Triggering

